消防员方舱装备中溴化阻燃剂的组成及其热性能分析

IF 1.9 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Fire Sciences Pub Date : 2021-04-15 DOI:10.1177/07349041211001296
Vincent N Mokoana, J. Asante, J. Okonkwo
{"title":"消防员方舱装备中溴化阻燃剂的组成及其热性能分析","authors":"Vincent N Mokoana, J. Asante, J. Okonkwo","doi":"10.1177/07349041211001296","DOIUrl":null,"url":null,"abstract":"Firefighting bunker gear is manufactured from flame-retardant materials, which resist ignition and delay flame spread. However, concerns have been emerging on the potential harmful effects of some flame retardants (FRs) commonly used in flame-retarding materials, particularly the brominated flame retardants. This study investigated the presence of flame retardants in bunker gear, particularly polybrominated diphenyl ethers and their congeners in the garments, and evaluated their impact on thermal performance. X-ray fluorescence spectroscopy was used to ascertain the presence of bromine as a possible indicator for brominated flame retardants. X-ray fluorescence results indicated the presence of Br in all samples, ranging from 444 to 20,367 µg/g. Further analysis via gas chromatography–mass spectrometry was done on samples. Brominated flame retardants, particularly polybrominated diphenyl ethers and hexabromocyclododecane, were detected in all samples with concentrations ranging from 261.61 to 1001.77 µg/g and 0.01 to 0.07 µg/g, respectively. The cone calorimeter was used, with 50 and 75 kW/m2 heat fluxes, to investigate the impact of the brominated flame-retardant concentrations, if any, on thermal performance. New bunker garments, particularly those with lower Br and brominated flame-retardant concentrations, were observed to have higher thermal performance.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/07349041211001296","citationCount":"3","resultStr":"{\"title\":\"Brominated flame-retardant composition in firefighter bunker gear and its thermal performance analysis\",\"authors\":\"Vincent N Mokoana, J. Asante, J. Okonkwo\",\"doi\":\"10.1177/07349041211001296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Firefighting bunker gear is manufactured from flame-retardant materials, which resist ignition and delay flame spread. However, concerns have been emerging on the potential harmful effects of some flame retardants (FRs) commonly used in flame-retarding materials, particularly the brominated flame retardants. This study investigated the presence of flame retardants in bunker gear, particularly polybrominated diphenyl ethers and their congeners in the garments, and evaluated their impact on thermal performance. X-ray fluorescence spectroscopy was used to ascertain the presence of bromine as a possible indicator for brominated flame retardants. X-ray fluorescence results indicated the presence of Br in all samples, ranging from 444 to 20,367 µg/g. Further analysis via gas chromatography–mass spectrometry was done on samples. Brominated flame retardants, particularly polybrominated diphenyl ethers and hexabromocyclododecane, were detected in all samples with concentrations ranging from 261.61 to 1001.77 µg/g and 0.01 to 0.07 µg/g, respectively. The cone calorimeter was used, with 50 and 75 kW/m2 heat fluxes, to investigate the impact of the brominated flame-retardant concentrations, if any, on thermal performance. New bunker garments, particularly those with lower Br and brominated flame-retardant concentrations, were observed to have higher thermal performance.\",\"PeriodicalId\":15772,\"journal\":{\"name\":\"Journal of Fire Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/07349041211001296\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fire Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/07349041211001296\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041211001296","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

消防舱齿轮采用阻燃材料制造,具有抗着火、延缓火焰蔓延的作用。然而,阻燃材料中常用的一些阻燃剂,特别是溴化阻燃剂的潜在有害影响已引起人们的关注。本研究调查了燃料箱装备中阻燃剂的存在,特别是多溴联苯醚及其在服装中的同系物,并评估了它们对热性能的影响。用x射线荧光光谱法确定溴的存在,作为溴化阻燃剂的可能指示剂。x射线荧光结果表明,所有样品中都存在Br,范围为444至20,367µg/g。通过气相色谱-质谱法对样品进行进一步分析。在所有样品中检测到溴化阻燃剂,特别是多溴联苯醚和六溴环十二烷,浓度分别为261.61至1001.77µg/g和0.01至0.07µg/g。使用热流为50和75 kW/m2的锥形量热计来研究溴化阻燃剂浓度(如果有的话)对热性能的影响。新的防弹衣,特别是那些含有较低Br和溴化阻燃剂浓度的防弹衣,被观察到具有更高的热性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brominated flame-retardant composition in firefighter bunker gear and its thermal performance analysis
Firefighting bunker gear is manufactured from flame-retardant materials, which resist ignition and delay flame spread. However, concerns have been emerging on the potential harmful effects of some flame retardants (FRs) commonly used in flame-retarding materials, particularly the brominated flame retardants. This study investigated the presence of flame retardants in bunker gear, particularly polybrominated diphenyl ethers and their congeners in the garments, and evaluated their impact on thermal performance. X-ray fluorescence spectroscopy was used to ascertain the presence of bromine as a possible indicator for brominated flame retardants. X-ray fluorescence results indicated the presence of Br in all samples, ranging from 444 to 20,367 µg/g. Further analysis via gas chromatography–mass spectrometry was done on samples. Brominated flame retardants, particularly polybrominated diphenyl ethers and hexabromocyclododecane, were detected in all samples with concentrations ranging from 261.61 to 1001.77 µg/g and 0.01 to 0.07 µg/g, respectively. The cone calorimeter was used, with 50 and 75 kW/m2 heat fluxes, to investigate the impact of the brominated flame-retardant concentrations, if any, on thermal performance. New bunker garments, particularly those with lower Br and brominated flame-retardant concentrations, were observed to have higher thermal performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fire Sciences
Journal of Fire Sciences 工程技术-材料科学:综合
CiteScore
4.00
自引率
0.00%
发文量
14
审稿时长
2.5 months
期刊介绍: The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
An experimental case study of escooter fire in a four-story building Measuring the fire growth potential of combustible solids using a cone calorimeter Reduced scale test bench for investigating the upward flame heat impact on external thermal insulation composite system facades Computational study on the glowing combustion of a wooden ember landing on a non-reacting substrate Fire-induced flows for complex fire scenarios in a mechanically ventilated two-storey structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1