通过表面分子包衣提高三维人多能细胞培养效率

IF 2.5 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Frontiers in chemical engineering Pub Date : 2022-10-20 DOI:10.3389/fceng.2022.1031395
Qiang Li, Ying Pan, Ling Han, Yakun Yang, Xinran Wu, Y. Lei
{"title":"通过表面分子包衣提高三维人多能细胞培养效率","authors":"Qiang Li, Ying Pan, Ling Han, Yakun Yang, Xinran Wu, Y. Lei","doi":"10.3389/fceng.2022.1031395","DOIUrl":null,"url":null,"abstract":"Human pluripotent stem cells (hPSCs) are ideal “raw materials” for making various human cell types for regenerative medicine and are needed in large numbers. 3D suspension culturing (e.g., stirred-tank bioreactor or STR), which suspends and cultures cells in an agitated medium, has been extensively studied to scale up hPSC production. However, a significant problem with 3D suspension is the uncontrolled spheroid agglomeration. It leads to cell growth arrest, cell apoptosis, and inhomogeneity in cell purity and quality. We propose that i) inhibiting the spheroid adhesion can prevent spheroid agglomeration and ii) the inhibition can be achieved via coating spheroids with biocompatible anti-adhesion molecules. We used PEG-lipids as model anti-adhesion molecules to successfully demonstrate the concept. PEG-lipids anchor to the spheroid surface through the interactions between their lipid chains and the cell membrane lipids. The flexible and hydrophilic PEG chains act as a dynamic barrier to prevent spheroid adhesion. We showed that the coating eliminated spheroid agglomeration, leading to homogenous spheroid size distribution and significant improvements in cell growth rate and volumetric yield. This novel approach is expected to impact large-scale hPSC production significantly. Furthermore, the approach can be generalized for culturing other human cell types.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving three-dimensional human pluripotent cell culture efficiency via surface molecule coating\",\"authors\":\"Qiang Li, Ying Pan, Ling Han, Yakun Yang, Xinran Wu, Y. Lei\",\"doi\":\"10.3389/fceng.2022.1031395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human pluripotent stem cells (hPSCs) are ideal “raw materials” for making various human cell types for regenerative medicine and are needed in large numbers. 3D suspension culturing (e.g., stirred-tank bioreactor or STR), which suspends and cultures cells in an agitated medium, has been extensively studied to scale up hPSC production. However, a significant problem with 3D suspension is the uncontrolled spheroid agglomeration. It leads to cell growth arrest, cell apoptosis, and inhomogeneity in cell purity and quality. We propose that i) inhibiting the spheroid adhesion can prevent spheroid agglomeration and ii) the inhibition can be achieved via coating spheroids with biocompatible anti-adhesion molecules. We used PEG-lipids as model anti-adhesion molecules to successfully demonstrate the concept. PEG-lipids anchor to the spheroid surface through the interactions between their lipid chains and the cell membrane lipids. The flexible and hydrophilic PEG chains act as a dynamic barrier to prevent spheroid adhesion. We showed that the coating eliminated spheroid agglomeration, leading to homogenous spheroid size distribution and significant improvements in cell growth rate and volumetric yield. This novel approach is expected to impact large-scale hPSC production significantly. Furthermore, the approach can be generalized for culturing other human cell types.\",\"PeriodicalId\":73073,\"journal\":{\"name\":\"Frontiers in chemical engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in chemical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fceng.2022.1031395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in chemical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fceng.2022.1031395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类多能干细胞(hPSCs)是制造用于再生医学的各种人类细胞类型的理想“原料”,需要大量使用。3D悬浮培养(例如,搅拌槽生物反应器或STR)在搅拌介质中悬浮和培养细胞,已被广泛研究以扩大hPSC的生产规模。然而,三维悬浮的一个重要问题是不受控制的球体团聚。它导致细胞生长停滞,细胞凋亡,细胞纯度和质量不均匀。我们提出i)抑制球体粘附可以防止球体团聚ii)抑制可以通过在球体表面涂上生物相容性的抗粘附分子来实现。我们使用聚乙二醇脂质作为模型抗粘附分子来成功地证明这一概念。聚乙二醇脂质通过其脂链与细胞膜脂质的相互作用锚定在球体表面。柔性和亲水性PEG链作为一个动态屏障,以防止球体粘附。我们发现涂层消除了球形团聚,导致球形尺寸分布均匀,显著提高了细胞生长速度和体积产率。这种新方法有望对大规模hPSC生产产生重大影响。此外,该方法可推广到其他人类细胞类型的培养。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving three-dimensional human pluripotent cell culture efficiency via surface molecule coating
Human pluripotent stem cells (hPSCs) are ideal “raw materials” for making various human cell types for regenerative medicine and are needed in large numbers. 3D suspension culturing (e.g., stirred-tank bioreactor or STR), which suspends and cultures cells in an agitated medium, has been extensively studied to scale up hPSC production. However, a significant problem with 3D suspension is the uncontrolled spheroid agglomeration. It leads to cell growth arrest, cell apoptosis, and inhomogeneity in cell purity and quality. We propose that i) inhibiting the spheroid adhesion can prevent spheroid agglomeration and ii) the inhibition can be achieved via coating spheroids with biocompatible anti-adhesion molecules. We used PEG-lipids as model anti-adhesion molecules to successfully demonstrate the concept. PEG-lipids anchor to the spheroid surface through the interactions between their lipid chains and the cell membrane lipids. The flexible and hydrophilic PEG chains act as a dynamic barrier to prevent spheroid adhesion. We showed that the coating eliminated spheroid agglomeration, leading to homogenous spheroid size distribution and significant improvements in cell growth rate and volumetric yield. This novel approach is expected to impact large-scale hPSC production significantly. Furthermore, the approach can be generalized for culturing other human cell types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Revealing the role of magnetic materials in light-driven advanced oxidation processes: enhanced degradation of contaminants and facilitated magnetic recovery BYG-drop: a tool for enhanced droplet detection in liquid–liquid systems through machine learning and synthetic imaging Systematic conceptual design strategies for the recovery of metals from E-waste Simulation of temporary plugging agent transport and optimization of fracturing parameters based on fiber optic monitoring data Editorial: Bioprocess designing towards clean energy production from industrial wastewater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1