人体左心室和主动脉瓣收缩过程的精确液固模拟

Mohammad Monfared A., Mohammad Mehdi Alishahi A., M. Alishahi
{"title":"人体左心室和主动脉瓣收缩过程的精确液固模拟","authors":"Mohammad Monfared A., Mohammad Mehdi Alishahi A., M. Alishahi","doi":"10.37394/232013.2022.17.3","DOIUrl":null,"url":null,"abstract":"This paper presents an accurate blood flow model with tissue deformation of the human left ventricle, including the aortic valve. A two-way fluid-solid Interaction (FSI) algorithm is employed to simulate the performance of the human left ventricle during systole. The initial geometry of the left ventricle is extracted from CT scan images of a healthy person. The simulation results produced the systolic anterior motion of the Left Ventricle (LV) identical with the CT scan images at later times during systole. Besides, the numerical results for left ventricular volume change, maximum blood velocity at the aortic valve, and its maximum opening are in good agreement with physiological data. Although no clear image of the aortic valve is apparent in CT images, the FSI simulation predicted the maximum opening of the aortic valve to be 4.38 cm2 which is consistent with physiological observation on a healthy individual. As an application of the above algorithm, a model of Hypertrophic Cardiomyopathy (HCM) or septal wall thickening disease is constructed and studied during systole. This simulation provides an understanding of heart performance under HCM conditions. According to the simulation outcomes, the mitral valve approaches the septal wall under HCM due to the change in pressure gradient and the drag force on the mitral valve. This blockage of the LV blood passage by the mitral valve results in stagnation pressure loss and weaker hearth pumping power. Therefore, the maximum opening of the aortic valve, in this case, is 2.28 cm2, which is much lower than the physiological range, indicating the drastic effect of HCM on the performance of the aortic valve and systolic performance.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise Fluid-Solid Simulation of Human Left Ventricle along with Aortic Valve during Systole\",\"authors\":\"Mohammad Monfared A., Mohammad Mehdi Alishahi A., M. Alishahi\",\"doi\":\"10.37394/232013.2022.17.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an accurate blood flow model with tissue deformation of the human left ventricle, including the aortic valve. A two-way fluid-solid Interaction (FSI) algorithm is employed to simulate the performance of the human left ventricle during systole. The initial geometry of the left ventricle is extracted from CT scan images of a healthy person. The simulation results produced the systolic anterior motion of the Left Ventricle (LV) identical with the CT scan images at later times during systole. Besides, the numerical results for left ventricular volume change, maximum blood velocity at the aortic valve, and its maximum opening are in good agreement with physiological data. Although no clear image of the aortic valve is apparent in CT images, the FSI simulation predicted the maximum opening of the aortic valve to be 4.38 cm2 which is consistent with physiological observation on a healthy individual. As an application of the above algorithm, a model of Hypertrophic Cardiomyopathy (HCM) or septal wall thickening disease is constructed and studied during systole. This simulation provides an understanding of heart performance under HCM conditions. According to the simulation outcomes, the mitral valve approaches the septal wall under HCM due to the change in pressure gradient and the drag force on the mitral valve. This blockage of the LV blood passage by the mitral valve results in stagnation pressure loss and weaker hearth pumping power. Therefore, the maximum opening of the aortic valve, in this case, is 2.28 cm2, which is much lower than the physiological range, indicating the drastic effect of HCM on the performance of the aortic valve and systolic performance.\",\"PeriodicalId\":39418,\"journal\":{\"name\":\"WSEAS Transactions on Fluid Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Fluid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232013.2022.17.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2022.17.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个精确的人体左心室(包括主动脉瓣)组织变形的血流模型。采用双向流固相互作用(FSI)算法模拟人体左心室在收缩期的表现。从健康人的CT扫描图像中提取左心室的初始几何形状。模拟结果产生了左心室(LV)的收缩前运动,与收缩期后期的CT扫描图像相同。此外,左心室容积变化、主动脉瓣最大血流速度及其最大开度的数值结果与生理数据吻合良好。尽管在CT图像中没有明显的主动脉瓣清晰图像,但FSI模拟预测主动脉瓣的最大开口为4.38cm2,这与对健康个体的生理观察一致。作为上述算法的应用,在收缩期期间构建并研究肥厚性心肌病(HCM)或间隔壁增厚疾病的模型。该模拟提供了对HCM条件下心脏表现的理解。根据模拟结果,在HCM下,由于压力梯度的变化和二尖瓣上的阻力,二尖瓣接近间隔壁。二尖瓣对左心室血液通道的堵塞导致停滞压力损失和炉膛泵送功率减弱。因此,在这种情况下,主动脉瓣的最大开度为2.28cm2,远低于生理范围,这表明HCM对主动脉瓣性能和收缩性能的剧烈影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precise Fluid-Solid Simulation of Human Left Ventricle along with Aortic Valve during Systole
This paper presents an accurate blood flow model with tissue deformation of the human left ventricle, including the aortic valve. A two-way fluid-solid Interaction (FSI) algorithm is employed to simulate the performance of the human left ventricle during systole. The initial geometry of the left ventricle is extracted from CT scan images of a healthy person. The simulation results produced the systolic anterior motion of the Left Ventricle (LV) identical with the CT scan images at later times during systole. Besides, the numerical results for left ventricular volume change, maximum blood velocity at the aortic valve, and its maximum opening are in good agreement with physiological data. Although no clear image of the aortic valve is apparent in CT images, the FSI simulation predicted the maximum opening of the aortic valve to be 4.38 cm2 which is consistent with physiological observation on a healthy individual. As an application of the above algorithm, a model of Hypertrophic Cardiomyopathy (HCM) or septal wall thickening disease is constructed and studied during systole. This simulation provides an understanding of heart performance under HCM conditions. According to the simulation outcomes, the mitral valve approaches the septal wall under HCM due to the change in pressure gradient and the drag force on the mitral valve. This blockage of the LV blood passage by the mitral valve results in stagnation pressure loss and weaker hearth pumping power. Therefore, the maximum opening of the aortic valve, in this case, is 2.28 cm2, which is much lower than the physiological range, indicating the drastic effect of HCM on the performance of the aortic valve and systolic performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Fluid Mechanics
WSEAS Transactions on Fluid Mechanics Engineering-Computational Mechanics
CiteScore
1.50
自引率
0.00%
发文量
20
期刊介绍: WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
期刊最新文献
Wind Velocity Effect on the Aerodynamic and Acoustic Behavior of a Vertical Axis Wind Turbine Aerodynamics Analysis Comparison between NACA 4412 and NREL S823 Airfoils Influence of Chemical and Radiation on an Unsteady MHD Oscillatory Flow using Artificial Neural Network (ANN) Non-Fourier Heat Flux Model for the Magnetohydrodynamic Casson Nanofluid Flow Past a Porous Stretching Sheet using the Akbari-Gangi Method Suspended Mooring Line Static Analysis using Internal XFlow Capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1