Y. Shimabukuro, G. de Oliveira, G. Pereira, E. Arai, F. Cardozo, A. C. Dutra, G. Mataveli
{"title":"使用Sentinel-2图像评估2020年潘塔纳尔火灾危机期间的烧伤区域","authors":"Y. Shimabukuro, G. de Oliveira, G. Pereira, E. Arai, F. Cardozo, A. C. Dutra, G. Mataveli","doi":"10.3390/fire6070277","DOIUrl":null,"url":null,"abstract":"The Pantanal biome—a tropical wetland area—has been suffering a prolonged drought that started in 2019 and peaked in 2020. This favored the occurrence of natural disasters and led to the 2020 Pantanal fire crisis. The purpose of this work was to map the burned area’s extent during this crisis in the Brazilian portion of the Pantanal biome using Sentinel-2 MSI images. The classification of the burned areas was performed using a machine learning algorithm (Random Forest) in the Google Earth Engine platform. Input variables in the algorithm were the percentiles 10, 25, 50, 75, and 90 of monthly (July to December) mosaics of the shade fraction, NDVI, and NBR images derived from Sentinel-2 MSI images. The results showed an overall accuracy of 95.9% and an estimate of 44,998 km2 burned in the Brazilian portion of the Pantanal, which resulted in severe ecosystem destruction and biodiversity loss in this biome. The burned area estimated in this work was higher than those estimated by the MCD64A1 (35,837 km2), Fire_cci (36,017 km2), GABAM (14,307 km2), and MapBiomas Fogo (23,372 km2) burned area products, which presented lower accuracies. These differences can be explained by the distinct datasets and methods used to obtain those estimates. The proposed approach based on Sentinel-2 images can potentially refine the burned area’s estimation at a regional scale and, consequently, improve the estimate of trace gases and aerosols associated with biomass burning, where global biomass burning inventories are widely known for having biases at a regional scale. Our study brings to light the necessity of developing approaches that aim to improve data and theory about the impacts of fire in regions critically sensitive to climate change, such as the Pantanal, in order to improve Earth systems models that forecast wetland–atmosphere interactions, and the role of these fires on current and future climate change over these regions.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessment of Burned Areas during the Pantanal Fire Crisis in 2020 Using Sentinel-2 Images\",\"authors\":\"Y. Shimabukuro, G. de Oliveira, G. Pereira, E. Arai, F. Cardozo, A. C. Dutra, G. Mataveli\",\"doi\":\"10.3390/fire6070277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Pantanal biome—a tropical wetland area—has been suffering a prolonged drought that started in 2019 and peaked in 2020. This favored the occurrence of natural disasters and led to the 2020 Pantanal fire crisis. The purpose of this work was to map the burned area’s extent during this crisis in the Brazilian portion of the Pantanal biome using Sentinel-2 MSI images. The classification of the burned areas was performed using a machine learning algorithm (Random Forest) in the Google Earth Engine platform. Input variables in the algorithm were the percentiles 10, 25, 50, 75, and 90 of monthly (July to December) mosaics of the shade fraction, NDVI, and NBR images derived from Sentinel-2 MSI images. The results showed an overall accuracy of 95.9% and an estimate of 44,998 km2 burned in the Brazilian portion of the Pantanal, which resulted in severe ecosystem destruction and biodiversity loss in this biome. The burned area estimated in this work was higher than those estimated by the MCD64A1 (35,837 km2), Fire_cci (36,017 km2), GABAM (14,307 km2), and MapBiomas Fogo (23,372 km2) burned area products, which presented lower accuracies. These differences can be explained by the distinct datasets and methods used to obtain those estimates. The proposed approach based on Sentinel-2 images can potentially refine the burned area’s estimation at a regional scale and, consequently, improve the estimate of trace gases and aerosols associated with biomass burning, where global biomass burning inventories are widely known for having biases at a regional scale. Our study brings to light the necessity of developing approaches that aim to improve data and theory about the impacts of fire in regions critically sensitive to climate change, such as the Pantanal, in order to improve Earth systems models that forecast wetland–atmosphere interactions, and the role of these fires on current and future climate change over these regions.\",\"PeriodicalId\":36395,\"journal\":{\"name\":\"Fire-Switzerland\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire-Switzerland\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fire6070277\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire-Switzerland","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fire6070277","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Assessment of Burned Areas during the Pantanal Fire Crisis in 2020 Using Sentinel-2 Images
The Pantanal biome—a tropical wetland area—has been suffering a prolonged drought that started in 2019 and peaked in 2020. This favored the occurrence of natural disasters and led to the 2020 Pantanal fire crisis. The purpose of this work was to map the burned area’s extent during this crisis in the Brazilian portion of the Pantanal biome using Sentinel-2 MSI images. The classification of the burned areas was performed using a machine learning algorithm (Random Forest) in the Google Earth Engine platform. Input variables in the algorithm were the percentiles 10, 25, 50, 75, and 90 of monthly (July to December) mosaics of the shade fraction, NDVI, and NBR images derived from Sentinel-2 MSI images. The results showed an overall accuracy of 95.9% and an estimate of 44,998 km2 burned in the Brazilian portion of the Pantanal, which resulted in severe ecosystem destruction and biodiversity loss in this biome. The burned area estimated in this work was higher than those estimated by the MCD64A1 (35,837 km2), Fire_cci (36,017 km2), GABAM (14,307 km2), and MapBiomas Fogo (23,372 km2) burned area products, which presented lower accuracies. These differences can be explained by the distinct datasets and methods used to obtain those estimates. The proposed approach based on Sentinel-2 images can potentially refine the burned area’s estimation at a regional scale and, consequently, improve the estimate of trace gases and aerosols associated with biomass burning, where global biomass burning inventories are widely known for having biases at a regional scale. Our study brings to light the necessity of developing approaches that aim to improve data and theory about the impacts of fire in regions critically sensitive to climate change, such as the Pantanal, in order to improve Earth systems models that forecast wetland–atmosphere interactions, and the role of these fires on current and future climate change over these regions.