{"title":"考虑混合润滑的滚动振动过程中的电接触","authors":"","doi":"10.1115/1.4062295","DOIUrl":null,"url":null,"abstract":"\n In many devices and applications, electrical contacts are exposed to vibrations, sliding, or rolling conditions and are prone to the fretting-based degradation. Thus, lubricants are often employed in such contacts to reduce sliding wear and fretting corrosion. However, due to the non-conductive behavior of the lubricants with fluorocarbons and hydrocarbons, lubricants lead to a few adverse problems. Also, the fluid dynamics upon excitation, vibration or sliding causes extended breaks or gaps in between the conducting surfaces. In reality, this can be noticed during vibrations occurring as a result of earthquakes or technical personnel maintenance. This could also have applications to electrified rolling element bearings. Factors such as surface roughness and fluid viscosity will determine the time taken for the two surfaces of the connectors to separate from a solid conductive contact. In this work, a coupled structural-fluid theoretical model is developed for evaluating such intermittent contact breaks/gaps when two metallic rough surfaces in contact are under vibrations. The model is capable of predicting the increase in the fluid film as well as the contact resistance change with time due to the possible connector vibration. The experimentally observed rocking vibration mode seen in connectors and the time-dependent squeeze film lubrication effect are also considered.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrical Contact During a Rolling Vibratory Motion Considering Mixed Lubrication\",\"authors\":\"\",\"doi\":\"10.1115/1.4062295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In many devices and applications, electrical contacts are exposed to vibrations, sliding, or rolling conditions and are prone to the fretting-based degradation. Thus, lubricants are often employed in such contacts to reduce sliding wear and fretting corrosion. However, due to the non-conductive behavior of the lubricants with fluorocarbons and hydrocarbons, lubricants lead to a few adverse problems. Also, the fluid dynamics upon excitation, vibration or sliding causes extended breaks or gaps in between the conducting surfaces. In reality, this can be noticed during vibrations occurring as a result of earthquakes or technical personnel maintenance. This could also have applications to electrified rolling element bearings. Factors such as surface roughness and fluid viscosity will determine the time taken for the two surfaces of the connectors to separate from a solid conductive contact. In this work, a coupled structural-fluid theoretical model is developed for evaluating such intermittent contact breaks/gaps when two metallic rough surfaces in contact are under vibrations. The model is capable of predicting the increase in the fluid film as well as the contact resistance change with time due to the possible connector vibration. The experimentally observed rocking vibration mode seen in connectors and the time-dependent squeeze film lubrication effect are also considered.\",\"PeriodicalId\":17586,\"journal\":{\"name\":\"Journal of Tribology-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tribology-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062295\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062295","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Electrical Contact During a Rolling Vibratory Motion Considering Mixed Lubrication
In many devices and applications, electrical contacts are exposed to vibrations, sliding, or rolling conditions and are prone to the fretting-based degradation. Thus, lubricants are often employed in such contacts to reduce sliding wear and fretting corrosion. However, due to the non-conductive behavior of the lubricants with fluorocarbons and hydrocarbons, lubricants lead to a few adverse problems. Also, the fluid dynamics upon excitation, vibration or sliding causes extended breaks or gaps in between the conducting surfaces. In reality, this can be noticed during vibrations occurring as a result of earthquakes or technical personnel maintenance. This could also have applications to electrified rolling element bearings. Factors such as surface roughness and fluid viscosity will determine the time taken for the two surfaces of the connectors to separate from a solid conductive contact. In this work, a coupled structural-fluid theoretical model is developed for evaluating such intermittent contact breaks/gaps when two metallic rough surfaces in contact are under vibrations. The model is capable of predicting the increase in the fluid film as well as the contact resistance change with time due to the possible connector vibration. The experimentally observed rocking vibration mode seen in connectors and the time-dependent squeeze film lubrication effect are also considered.
期刊介绍:
The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes.
Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints