用于肺部免疫的阳离子脂质体佐剂CAF®01干粉吸入器配方的优化设计和给药

Aneesh Thakur, You Xu, G. Cano-Garcia, Siqi Feng, Fabrice Rose, P. Gerde, P. Andersen, D. Christensen, C. Foged
{"title":"用于肺部免疫的阳离子脂质体佐剂CAF®01干粉吸入器配方的优化设计和给药","authors":"Aneesh Thakur, You Xu, G. Cano-Garcia, Siqi Feng, Fabrice Rose, P. Gerde, P. Andersen, D. Christensen, C. Foged","doi":"10.3389/fddev.2022.973599","DOIUrl":null,"url":null,"abstract":"Thermostability is one of the product characteristics preferred by WHO for vaccines against respiratory infections due to ease of administration, pain minimization, and low costs. Thermostable dry powder inhaler (DPI) vaccine formulations can induce protective antibodies and T cells at the site of infection in the lungs. However, the majority of licensed human vaccines is based on liquid dosage forms, and there is no licensed mucosal adjuvants. The cationic adjuvant formulation 01 (CAF®01) is a liposome-based adjuvant system that (i) induces robust T cells and antibodies, (ii) is safe and well-tolerated in clinical trials, and (iii) induces mucosal immune responses after pulmonary administration. However, the optimal DPI formulations of CAF®01 for pulmonary immunization are not known. Here, we show that DPI formulations of CAF®01 spray-dried with a combination of sugars and the amino acid leucine exhibit optimal aerosolization properties and distribute in the lung lobes upon pulmonary administration. We demonstrate that the type of amorphous sugar used as stabilizer and the amount (w/w) of leucine used during spray drying affect the physicochemical properties and aerosol performance of DPI formulations. By systematically varying the ratios (w/w) of trehalose, dextran and leucine used as excipients during spray drying, we manufactured DPI formulations of CAF®01 that displayed (i) a spherical or wrinkled surface morphology, (ii) an aerodynamic diameter and particle size distribution optimal for deep lung deposition, and (iii) solid-state and aerosolization properties suitable for lung delivery. Using a design-of-experiments-based approach, we identified the most optimal process parameters in an in vivo aerosol generator, i.e., the PreciseInhale® system, which was used to measure the flowability of the aerosols. We found that the DPI formulation of CAF®01 spray-dried with trehalose and dextran (70% w/w) and leucine (30% w/w) displayed the most optimal physicochemical, morphological, solid-state, and aerosolization properties for deep lung deposition. Upon pulmonary administration, this DPI formulation distributed in the lung lobes in a way that was almost identical to the biodistribution of the non-spray dried formulation. Hence, DPI formulations of CAF®01, prepared with trehalose and dextran sugar matrix and a leucine shell, display physicochemical and aerosol properties suitable for inhalation.","PeriodicalId":73079,"journal":{"name":"Frontiers in drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimizing the design and dosing of dry powder inhaler formulations of the cationic liposome adjuvant CAF®01 for pulmonary immunization\",\"authors\":\"Aneesh Thakur, You Xu, G. Cano-Garcia, Siqi Feng, Fabrice Rose, P. Gerde, P. Andersen, D. Christensen, C. Foged\",\"doi\":\"10.3389/fddev.2022.973599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermostability is one of the product characteristics preferred by WHO for vaccines against respiratory infections due to ease of administration, pain minimization, and low costs. Thermostable dry powder inhaler (DPI) vaccine formulations can induce protective antibodies and T cells at the site of infection in the lungs. However, the majority of licensed human vaccines is based on liquid dosage forms, and there is no licensed mucosal adjuvants. The cationic adjuvant formulation 01 (CAF®01) is a liposome-based adjuvant system that (i) induces robust T cells and antibodies, (ii) is safe and well-tolerated in clinical trials, and (iii) induces mucosal immune responses after pulmonary administration. However, the optimal DPI formulations of CAF®01 for pulmonary immunization are not known. Here, we show that DPI formulations of CAF®01 spray-dried with a combination of sugars and the amino acid leucine exhibit optimal aerosolization properties and distribute in the lung lobes upon pulmonary administration. We demonstrate that the type of amorphous sugar used as stabilizer and the amount (w/w) of leucine used during spray drying affect the physicochemical properties and aerosol performance of DPI formulations. By systematically varying the ratios (w/w) of trehalose, dextran and leucine used as excipients during spray drying, we manufactured DPI formulations of CAF®01 that displayed (i) a spherical or wrinkled surface morphology, (ii) an aerodynamic diameter and particle size distribution optimal for deep lung deposition, and (iii) solid-state and aerosolization properties suitable for lung delivery. Using a design-of-experiments-based approach, we identified the most optimal process parameters in an in vivo aerosol generator, i.e., the PreciseInhale® system, which was used to measure the flowability of the aerosols. We found that the DPI formulation of CAF®01 spray-dried with trehalose and dextran (70% w/w) and leucine (30% w/w) displayed the most optimal physicochemical, morphological, solid-state, and aerosolization properties for deep lung deposition. Upon pulmonary administration, this DPI formulation distributed in the lung lobes in a way that was almost identical to the biodistribution of the non-spray dried formulation. Hence, DPI formulations of CAF®01, prepared with trehalose and dextran sugar matrix and a leucine shell, display physicochemical and aerosol properties suitable for inhalation.\",\"PeriodicalId\":73079,\"journal\":{\"name\":\"Frontiers in drug delivery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fddev.2022.973599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fddev.2022.973599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于易于给药、疼痛最小化和成本低,热稳定性是世卫组织首选的呼吸道感染疫苗产品特性之一。耐热干粉吸入器(DPI)疫苗制剂可在肺部感染部位诱导保护性抗体和T细胞。然而,大多数获得许可的人用疫苗都是液体剂型,并且没有获得许可的粘膜佐剂。阳离子佐剂制剂01 (CAF®01)是一种基于脂体的佐剂系统,它(i)诱导强大的T细胞和抗体,(ii)在临床试验中是安全且耐受性良好的,(iii)在肺部给药后诱导粘膜免疫反应。然而,CAF®01用于肺部免疫的最佳DPI配方尚不清楚。在这里,我们表明,用糖和氨基酸亮氨酸的组合喷雾干燥的CAF®01的DPI配方表现出最佳的雾化特性,并在肺给药时分布在肺叶中。我们证明了用作稳定剂的无定形糖的类型和喷雾干燥过程中使用的亮氨酸的量(w/w)会影响DPI配方的物理化学性质和气溶胶性能。通过在喷雾干燥过程中系统地改变海藻糖、葡聚糖和亮氨酸作为辅料的比例(w/w),我们制造出CAF®01的DPI配方,该配方显示出(i)球形或褶皱表面形态,(ii)最适合深肺沉积的空气动力学直径和粒径分布,以及(iii)适合肺输送的固态和雾化特性。采用基于实验设计的方法,我们确定了体内气溶胶发生器(即precise吸气®系统)中最优的工艺参数,该系统用于测量气溶胶的流动性。我们发现,海藻糖和葡聚糖(70% w/w)和亮氨酸(30% w/w)喷雾干燥的CAF®01 DPI配方在深肺沉积中表现出最佳的理化、形态学、固态和雾化性能。在肺部给药后,这种DPI制剂在肺叶中的分布方式几乎与非喷雾干燥制剂的生物分布相同。因此,由海藻糖和葡聚糖糖基质和亮氨酸外壳制备的CAF®01的DPI制剂显示出适合吸入的物理化学和气溶胶特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing the design and dosing of dry powder inhaler formulations of the cationic liposome adjuvant CAF®01 for pulmonary immunization
Thermostability is one of the product characteristics preferred by WHO for vaccines against respiratory infections due to ease of administration, pain minimization, and low costs. Thermostable dry powder inhaler (DPI) vaccine formulations can induce protective antibodies and T cells at the site of infection in the lungs. However, the majority of licensed human vaccines is based on liquid dosage forms, and there is no licensed mucosal adjuvants. The cationic adjuvant formulation 01 (CAF®01) is a liposome-based adjuvant system that (i) induces robust T cells and antibodies, (ii) is safe and well-tolerated in clinical trials, and (iii) induces mucosal immune responses after pulmonary administration. However, the optimal DPI formulations of CAF®01 for pulmonary immunization are not known. Here, we show that DPI formulations of CAF®01 spray-dried with a combination of sugars and the amino acid leucine exhibit optimal aerosolization properties and distribute in the lung lobes upon pulmonary administration. We demonstrate that the type of amorphous sugar used as stabilizer and the amount (w/w) of leucine used during spray drying affect the physicochemical properties and aerosol performance of DPI formulations. By systematically varying the ratios (w/w) of trehalose, dextran and leucine used as excipients during spray drying, we manufactured DPI formulations of CAF®01 that displayed (i) a spherical or wrinkled surface morphology, (ii) an aerodynamic diameter and particle size distribution optimal for deep lung deposition, and (iii) solid-state and aerosolization properties suitable for lung delivery. Using a design-of-experiments-based approach, we identified the most optimal process parameters in an in vivo aerosol generator, i.e., the PreciseInhale® system, which was used to measure the flowability of the aerosols. We found that the DPI formulation of CAF®01 spray-dried with trehalose and dextran (70% w/w) and leucine (30% w/w) displayed the most optimal physicochemical, morphological, solid-state, and aerosolization properties for deep lung deposition. Upon pulmonary administration, this DPI formulation distributed in the lung lobes in a way that was almost identical to the biodistribution of the non-spray dried formulation. Hence, DPI formulations of CAF®01, prepared with trehalose and dextran sugar matrix and a leucine shell, display physicochemical and aerosol properties suitable for inhalation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strategies and delivery systems for cell-based therapy in autoimmunity Preliminary results on novel adjuvant combinations suggest enhanced immunogenicity of whole inactivated pandemic influenza vaccines Induction of P-glycoprotein overexpression in brain endothelial cells as a model to study blood-brain barrier efflux transport SpheroMold: modernizing the hanging drop method for spheroid culture 3D-printed weight holders design and testing in mouse models of spinal cord injury
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1