Sodeeq Aderotimi Salami , Vincent J. Smith , Rui W.M. Krause
{"title":"用Lawesson试剂胺催化硫代异氰酸酯合成异硫氰酸酯","authors":"Sodeeq Aderotimi Salami , Vincent J. Smith , Rui W.M. Krause","doi":"10.1080/17415993.2022.2164196","DOIUrl":null,"url":null,"abstract":"<div><p>A green and sustainable chemistry approach for organic synthesis is described here, which involves microwave exposure of reactants in the presence of water. A general, practical, and highly efficient protocol for the preparation of a broad range of functionalized isothiocyanates has been developed from their corresponding isocyanides using Lawesson's reagent and catalytic amount of amine bases, particularly triethylamine under microwave irradiation conditions. As opposed to established approaches that employ toxic or volatile electrophilic liquids (thiophosgene, its derivatives, or CS<sub>2</sub>). In addition, these compounds were synthesized also by conventional heating procedures for comparison. Comparison between conventional and microwave-assisted synthesis was carried out by comparing total reaction time and percentage yield. The results suggest that microwave-assisted syntheses lead to higher yields within very short reaction times.</p><p>From isocyanides to isothiocyanates using Lawesson’s reagent in the presence of triethylamine under conventional and microwave heating conditions.</p></div>","PeriodicalId":17081,"journal":{"name":"Journal of Sulfur Chemistry","volume":"44 3","pages":"Pages 269-281"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aqueous microwave assisted novel synthesis of isothiocyanates by amine catalyzed thionation of isocyanides with Lawesson's reagent\",\"authors\":\"Sodeeq Aderotimi Salami , Vincent J. Smith , Rui W.M. Krause\",\"doi\":\"10.1080/17415993.2022.2164196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A green and sustainable chemistry approach for organic synthesis is described here, which involves microwave exposure of reactants in the presence of water. A general, practical, and highly efficient protocol for the preparation of a broad range of functionalized isothiocyanates has been developed from their corresponding isocyanides using Lawesson's reagent and catalytic amount of amine bases, particularly triethylamine under microwave irradiation conditions. As opposed to established approaches that employ toxic or volatile electrophilic liquids (thiophosgene, its derivatives, or CS<sub>2</sub>). In addition, these compounds were synthesized also by conventional heating procedures for comparison. Comparison between conventional and microwave-assisted synthesis was carried out by comparing total reaction time and percentage yield. The results suggest that microwave-assisted syntheses lead to higher yields within very short reaction times.</p><p>From isocyanides to isothiocyanates using Lawesson’s reagent in the presence of triethylamine under conventional and microwave heating conditions.</p></div>\",\"PeriodicalId\":17081,\"journal\":{\"name\":\"Journal of Sulfur Chemistry\",\"volume\":\"44 3\",\"pages\":\"Pages 269-281\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sulfur Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1741599323000090\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sulfur Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1741599323000090","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Aqueous microwave assisted novel synthesis of isothiocyanates by amine catalyzed thionation of isocyanides with Lawesson's reagent
A green and sustainable chemistry approach for organic synthesis is described here, which involves microwave exposure of reactants in the presence of water. A general, practical, and highly efficient protocol for the preparation of a broad range of functionalized isothiocyanates has been developed from their corresponding isocyanides using Lawesson's reagent and catalytic amount of amine bases, particularly triethylamine under microwave irradiation conditions. As opposed to established approaches that employ toxic or volatile electrophilic liquids (thiophosgene, its derivatives, or CS2). In addition, these compounds were synthesized also by conventional heating procedures for comparison. Comparison between conventional and microwave-assisted synthesis was carried out by comparing total reaction time and percentage yield. The results suggest that microwave-assisted syntheses lead to higher yields within very short reaction times.
From isocyanides to isothiocyanates using Lawesson’s reagent in the presence of triethylamine under conventional and microwave heating conditions.
期刊介绍:
The Journal of Sulfur Chemistry is an international journal for the dissemination of scientific results in the rapidly expanding realm of sulfur chemistry. The journal publishes high quality reviews, full papers and communications in the following areas: organic and inorganic chemistry, industrial chemistry, materials and polymer chemistry, biological chemistry and interdisciplinary studies directly related to sulfur science.
Papers outlining theoretical, physical, mechanistic or synthetic studies pertaining to sulfur chemistry are welcome. Hence the target audience is made up of academic and industrial chemists with peripheral or focused interests in sulfur chemistry. Manuscripts that truly define the aims of the journal include, but are not limited to, those that offer: a) innovative use of sulfur reagents; b) new synthetic approaches to sulfur-containing biomolecules, materials or organic and organometallic compounds; c) theoretical and physical studies that facilitate the understanding of sulfur structure, bonding or reactivity; d) catalytic, selective, synthetically useful or noteworthy transformations of sulfur containing molecules; e) industrial applications of sulfur chemistry; f) unique sulfur atom or molecule involvement in interfacial phenomena; g) descriptions of solid phase or combinatorial methods involving sulfur containing substrates. Submissions pertaining to related atoms such as selenium and tellurium are also welcome. Articles offering routine heterocycle formation through established reactions of sulfur containing substrates are outside the scope of the journal.