深度强化学习控制在倒立液压摆中的应用

IF 0.7 Q4 ENGINEERING, MECHANICAL International Journal of Fluid Power Pub Date : 2023-05-03 DOI:10.13052/ijfp1439-9776.2429
Faras Brumand-Poor, Lovis Kauderer, G. Matthiesen, K. Schmitz
{"title":"深度强化学习控制在倒立液压摆中的应用","authors":"Faras Brumand-Poor, Lovis Kauderer, G. Matthiesen, K. Schmitz","doi":"10.13052/ijfp1439-9776.2429","DOIUrl":null,"url":null,"abstract":"Deep reinforcement learning (RL) control is an emerging branch of machine learning focusing on data-driven solutions to complex nonlinear optimal control problems by trial-and-error learning. This study aims to apply deep reinforcement learning control to a hydromechanical system. The investigated system is an inverted pendulum on a cart with a hydraulic drive. The focus lies on implementing a comprehensive framework for the deep RL controller, which allows for training a control strategy in simulation and solving the tasks of swinging the pendulum up and balancing it. The RL controller can solve these challenges successfully; therefore, reinforcement learning presents a possibility for novel data-driven control approaches for hydromechanical systems.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Deep Reinforcement Learning Control of an Inverted Hydraulic Pendulum\",\"authors\":\"Faras Brumand-Poor, Lovis Kauderer, G. Matthiesen, K. Schmitz\",\"doi\":\"10.13052/ijfp1439-9776.2429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep reinforcement learning (RL) control is an emerging branch of machine learning focusing on data-driven solutions to complex nonlinear optimal control problems by trial-and-error learning. This study aims to apply deep reinforcement learning control to a hydromechanical system. The investigated system is an inverted pendulum on a cart with a hydraulic drive. The focus lies on implementing a comprehensive framework for the deep RL controller, which allows for training a control strategy in simulation and solving the tasks of swinging the pendulum up and balancing it. The RL controller can solve these challenges successfully; therefore, reinforcement learning presents a possibility for novel data-driven control approaches for hydromechanical systems.\",\"PeriodicalId\":13977,\"journal\":{\"name\":\"International Journal of Fluid Power\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fluid Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ijfp1439-9776.2429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ijfp1439-9776.2429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

深度强化学习(RL)控制是机器学习的一个新兴分支,专注于通过试错学习解决复杂非线性最优控制问题的数据驱动解决方案。本研究旨在将深度强化学习控制应用于流体机械系统。所研究的系统是一个液压驱动的倒立摆小车。重点在于实现深度强化学习控制器的综合框架,该框架允许在模拟中训练控制策略,并解决摆动钟摆和平衡钟摆的任务。RL控制器可以成功地解决这些挑战;因此,强化学习为流体机械系统提供了一种新的数据驱动控制方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Deep Reinforcement Learning Control of an Inverted Hydraulic Pendulum
Deep reinforcement learning (RL) control is an emerging branch of machine learning focusing on data-driven solutions to complex nonlinear optimal control problems by trial-and-error learning. This study aims to apply deep reinforcement learning control to a hydromechanical system. The investigated system is an inverted pendulum on a cart with a hydraulic drive. The focus lies on implementing a comprehensive framework for the deep RL controller, which allows for training a control strategy in simulation and solving the tasks of swinging the pendulum up and balancing it. The RL controller can solve these challenges successfully; therefore, reinforcement learning presents a possibility for novel data-driven control approaches for hydromechanical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fluid Power
International Journal of Fluid Power ENGINEERING, MECHANICAL-
CiteScore
1.60
自引率
0.00%
发文量
16
期刊最新文献
A Review of Pilot-operated Hydraulic Valves – Development, Challenges, and a Comparative Study Facilitating Energy Monitoring and Fault Diagnosis of Pneumatic Cylinders with Exergy and Machine Learning Performance Analysis of a Pressurized Assembly with a Reinforced O-ring Hydrodynamic Analysis of Shallow Water Sloshing in Ship Chamber Under Longitudinal Earthquake Effect of Blowing Ratio on Turbine Blade Air Film Cooling Under Different Engine Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1