{"title":"一种基于深度强化学习的作业插入动态分布式阻塞流程调度方法","authors":"Xueyan Sun, Birgit Vogel-Heuser, Fandi Bi, Weiming Shen","doi":"10.1049/cim2.12060","DOIUrl":null,"url":null,"abstract":"<p>The distributed blocking flowshop scheduling problem (DBFSP) with new job insertions is studied. Rescheduling all remaining jobs after a dynamic event like a new job insertion is unreasonable to an actual distributed blocking flowshop production process. A deep reinforcement learning (DRL) algorithm is proposed to optimise the job selection model, and local modifications are made on the basis of the original scheduling plan when new jobs arrive. The objective is to minimise the total completion time deviation of all products so that all jobs can be finished on time to reduce the cost of storage. First, according to the definitions of the dynamic DBFSP problem, a DRL framework based on multi-agent deep deterministic policy gradient (MADDPG) is proposed. In this framework, a full schedule is generated by the variable neighbourhood descent algorithm before a dynamic event occurs. Meanwhile, all newly added jobs are reordered before the agents make decisions to select the one that needs to be scheduled most urgently. This study defines the observations, actions and reward calculation methods and applies centralised training and distributed execution in MADDPG. Finally, a comprehensive computational experiment is carried out to compare the proposed method with the closely related and well-performing methods. The results indicate that the proposed method can solve the dynamic DBFSP effectively and efficiently.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"4 3","pages":"166-180"},"PeriodicalIF":2.5000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12060","citationCount":"7","resultStr":"{\"title\":\"A deep reinforcement learning based approach for dynamic distributed blocking flowshop scheduling with job insertions\",\"authors\":\"Xueyan Sun, Birgit Vogel-Heuser, Fandi Bi, Weiming Shen\",\"doi\":\"10.1049/cim2.12060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The distributed blocking flowshop scheduling problem (DBFSP) with new job insertions is studied. Rescheduling all remaining jobs after a dynamic event like a new job insertion is unreasonable to an actual distributed blocking flowshop production process. A deep reinforcement learning (DRL) algorithm is proposed to optimise the job selection model, and local modifications are made on the basis of the original scheduling plan when new jobs arrive. The objective is to minimise the total completion time deviation of all products so that all jobs can be finished on time to reduce the cost of storage. First, according to the definitions of the dynamic DBFSP problem, a DRL framework based on multi-agent deep deterministic policy gradient (MADDPG) is proposed. In this framework, a full schedule is generated by the variable neighbourhood descent algorithm before a dynamic event occurs. Meanwhile, all newly added jobs are reordered before the agents make decisions to select the one that needs to be scheduled most urgently. This study defines the observations, actions and reward calculation methods and applies centralised training and distributed execution in MADDPG. Finally, a comprehensive computational experiment is carried out to compare the proposed method with the closely related and well-performing methods. The results indicate that the proposed method can solve the dynamic DBFSP effectively and efficiently.</p>\",\"PeriodicalId\":33286,\"journal\":{\"name\":\"IET Collaborative Intelligent Manufacturing\",\"volume\":\"4 3\",\"pages\":\"166-180\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12060\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Collaborative Intelligent Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A deep reinforcement learning based approach for dynamic distributed blocking flowshop scheduling with job insertions
The distributed blocking flowshop scheduling problem (DBFSP) with new job insertions is studied. Rescheduling all remaining jobs after a dynamic event like a new job insertion is unreasonable to an actual distributed blocking flowshop production process. A deep reinforcement learning (DRL) algorithm is proposed to optimise the job selection model, and local modifications are made on the basis of the original scheduling plan when new jobs arrive. The objective is to minimise the total completion time deviation of all products so that all jobs can be finished on time to reduce the cost of storage. First, according to the definitions of the dynamic DBFSP problem, a DRL framework based on multi-agent deep deterministic policy gradient (MADDPG) is proposed. In this framework, a full schedule is generated by the variable neighbourhood descent algorithm before a dynamic event occurs. Meanwhile, all newly added jobs are reordered before the agents make decisions to select the one that needs to be scheduled most urgently. This study defines the observations, actions and reward calculation methods and applies centralised training and distributed execution in MADDPG. Finally, a comprehensive computational experiment is carried out to compare the proposed method with the closely related and well-performing methods. The results indicate that the proposed method can solve the dynamic DBFSP effectively and efficiently.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).