{"title":"在无反应的情况下估计群体平均值的推断,并应用于曼谷的细颗粒密度","authors":"Kanisa Chodjuntug, Nuanpan Lawson","doi":"10.1080/08898480.2021.1997466","DOIUrl":null,"url":null,"abstract":"ABSTRACT Air pollution in Bangkok, Thailand, is mainly due to fine particles emitted in exhaust gases. However, many data on fine particle concentrations are missing, a fact which may bias the statistics. Exponential-type imputation minimizing the mean square error allows for estimating the missing values of these concentrations and provides an estimate with smaller mean square error of the mean concentration levels. The bias and mean square error of the proposed estimator are calculated. Simulation shows that the relative efficiency is 5% higher up to 50 observations, 12% higher for 100 observations, and 25% higher for 200 observations. Application to the measurement of fine particle concentration in Bangkok yields a mean square error of 0.73 micrograms per cubic meter squared, for a mean level of 47.40 micrograms per cubic meter, while the mean square error by the best alternative estimator selected is 0.90 micrograms per cubic meter squared, for a mean level of 48.20 micrograms per cubic meter.","PeriodicalId":49859,"journal":{"name":"Mathematical Population Studies","volume":"29 1","pages":"204 - 225"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Imputation for estimating the population mean in the presence of nonresponse, with application to fine particle density in Bangkok\",\"authors\":\"Kanisa Chodjuntug, Nuanpan Lawson\",\"doi\":\"10.1080/08898480.2021.1997466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Air pollution in Bangkok, Thailand, is mainly due to fine particles emitted in exhaust gases. However, many data on fine particle concentrations are missing, a fact which may bias the statistics. Exponential-type imputation minimizing the mean square error allows for estimating the missing values of these concentrations and provides an estimate with smaller mean square error of the mean concentration levels. The bias and mean square error of the proposed estimator are calculated. Simulation shows that the relative efficiency is 5% higher up to 50 observations, 12% higher for 100 observations, and 25% higher for 200 observations. Application to the measurement of fine particle concentration in Bangkok yields a mean square error of 0.73 micrograms per cubic meter squared, for a mean level of 47.40 micrograms per cubic meter, while the mean square error by the best alternative estimator selected is 0.90 micrograms per cubic meter squared, for a mean level of 48.20 micrograms per cubic meter.\",\"PeriodicalId\":49859,\"journal\":{\"name\":\"Mathematical Population Studies\",\"volume\":\"29 1\",\"pages\":\"204 - 225\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Population Studies\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/08898480.2021.1997466\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEMOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Population Studies","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/08898480.2021.1997466","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
Imputation for estimating the population mean in the presence of nonresponse, with application to fine particle density in Bangkok
ABSTRACT Air pollution in Bangkok, Thailand, is mainly due to fine particles emitted in exhaust gases. However, many data on fine particle concentrations are missing, a fact which may bias the statistics. Exponential-type imputation minimizing the mean square error allows for estimating the missing values of these concentrations and provides an estimate with smaller mean square error of the mean concentration levels. The bias and mean square error of the proposed estimator are calculated. Simulation shows that the relative efficiency is 5% higher up to 50 observations, 12% higher for 100 observations, and 25% higher for 200 observations. Application to the measurement of fine particle concentration in Bangkok yields a mean square error of 0.73 micrograms per cubic meter squared, for a mean level of 47.40 micrograms per cubic meter, while the mean square error by the best alternative estimator selected is 0.90 micrograms per cubic meter squared, for a mean level of 48.20 micrograms per cubic meter.
期刊介绍:
Mathematical Population Studies publishes carefully selected research papers in the mathematical and statistical study of populations. The journal is strongly interdisciplinary and invites contributions by mathematicians, demographers, (bio)statisticians, sociologists, economists, biologists, epidemiologists, actuaries, geographers, and others who are interested in the mathematical formulation of population-related questions.
The scope covers both theoretical and empirical work. Manuscripts should be sent to Manuscript central for review. The editor-in-chief has final say on the suitability for publication.