{"title":"地球静止轨道全电力通信卫星系统分析与设计","authors":"Parsa Abbasrezaee, Ali Saraaeb","doi":"10.1590/JATM.V13.1205","DOIUrl":null,"url":null,"abstract":"With the help of gathered data and formulas extracted from a previous conference paper, the all-electric geostationary Earth orbit (GEO) communication satellite statistical design was conducted and further studied with analytic hierarchy process (AHP) and technique for order of preference by similarity to ideal solution (TOPSIS) methods. Moreover, with the help of previously determined system parameters, the orbital ascension, orbital maintenance and deorbiting specifications, calculations and simulations were persuaded. Furthermore, a parametric subsystem design was conducted to test the methods reliability and prove the feasibility of such approach. The parametric subsystem design was used for electrical power subsystem(EPS), attitude determination and control system (ADCS), electric propulsion, telemetry, tracking and control (TTC other subsystem designs were not of a significant difference to hybrid and chemical satellites. Eventually, the verification of the mentioned subsystems has been evaluated by contrasting the results with the Space mission engineering: the new SMAD, and subsystem design book reference.","PeriodicalId":14872,"journal":{"name":"Journal of Aerospace Technology and Management","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"System Analysis and Design of the Geostationary Earth Orbit All-Electric Communication Satellites\",\"authors\":\"Parsa Abbasrezaee, Ali Saraaeb\",\"doi\":\"10.1590/JATM.V13.1205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the help of gathered data and formulas extracted from a previous conference paper, the all-electric geostationary Earth orbit (GEO) communication satellite statistical design was conducted and further studied with analytic hierarchy process (AHP) and technique for order of preference by similarity to ideal solution (TOPSIS) methods. Moreover, with the help of previously determined system parameters, the orbital ascension, orbital maintenance and deorbiting specifications, calculations and simulations were persuaded. Furthermore, a parametric subsystem design was conducted to test the methods reliability and prove the feasibility of such approach. The parametric subsystem design was used for electrical power subsystem(EPS), attitude determination and control system (ADCS), electric propulsion, telemetry, tracking and control (TTC other subsystem designs were not of a significant difference to hybrid and chemical satellites. Eventually, the verification of the mentioned subsystems has been evaluated by contrasting the results with the Space mission engineering: the new SMAD, and subsystem design book reference.\",\"PeriodicalId\":14872,\"journal\":{\"name\":\"Journal of Aerospace Technology and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerospace Technology and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/JATM.V13.1205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Technology and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/JATM.V13.1205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
System Analysis and Design of the Geostationary Earth Orbit All-Electric Communication Satellites
With the help of gathered data and formulas extracted from a previous conference paper, the all-electric geostationary Earth orbit (GEO) communication satellite statistical design was conducted and further studied with analytic hierarchy process (AHP) and technique for order of preference by similarity to ideal solution (TOPSIS) methods. Moreover, with the help of previously determined system parameters, the orbital ascension, orbital maintenance and deorbiting specifications, calculations and simulations were persuaded. Furthermore, a parametric subsystem design was conducted to test the methods reliability and prove the feasibility of such approach. The parametric subsystem design was used for electrical power subsystem(EPS), attitude determination and control system (ADCS), electric propulsion, telemetry, tracking and control (TTC other subsystem designs were not of a significant difference to hybrid and chemical satellites. Eventually, the verification of the mentioned subsystems has been evaluated by contrasting the results with the Space mission engineering: the new SMAD, and subsystem design book reference.