Laylla Marques Coelho , Idalina Gonçalves , Paula Ferreira , Ana C. Pinheiro , António A. Vicente , Joana T. Martins
{"title":"苋粒淀粉和蛋白质微胶囊作为β-胡萝卜素食品载体体系的性能研究","authors":"Laylla Marques Coelho , Idalina Gonçalves , Paula Ferreira , Ana C. Pinheiro , António A. Vicente , Joana T. Martins","doi":"10.1016/j.foostr.2022.100287","DOIUrl":null,"url":null,"abstract":"<div><p><span>Underexploited sources of bio-based wall materials for bioactive compounds (such as β-carotene) encapsulation have gained increasing interest within the scientific community. In this study, the potential of amaranth (</span><span><em>Amaranthus</em><em> cruentus</em></span><span>) grain<span> starch and protein rich fractions as microcapsules’ wall materials to carrier β-carotene was evaluated. Microcapsules were produced by spray-drying and their morphological and physicochemical characterisation was carried out. The microcapsules presented a spherical shape (particle size distribution: 0.3–30 µm) and encapsulation efficiencies ranging from 64 % to 69 %. Results showed that protein-based microcapsules had better β-carotene storage stability as compared to starch-based microcapsules (at 8 and 25 °C). β-carotene release kinetics at 37 °C and pH 7.4 could be mainly described by structural-relaxation phenomenon using the linear superposition model. Moreover, encapsulated β-carotene exhibited higher bioaccessibility than its free form after simulated in vitro digestion tests. Microcapsules did not affect cell viability at 0.0625 mg L</span></span><sup>−1</sup> of β-carotene. Thus, amaranth grain biopolymers-based microcapsules were successfully developed as promising β-carotene delivery systems to be added to food products and consequently, to improve their functionality.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"33 ","pages":"Article 100287"},"PeriodicalIF":5.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Exploring the performance of amaranth grain starch and protein microcapsules as β-carotene carrier systems for food applications\",\"authors\":\"Laylla Marques Coelho , Idalina Gonçalves , Paula Ferreira , Ana C. Pinheiro , António A. Vicente , Joana T. Martins\",\"doi\":\"10.1016/j.foostr.2022.100287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Underexploited sources of bio-based wall materials for bioactive compounds (such as β-carotene) encapsulation have gained increasing interest within the scientific community. In this study, the potential of amaranth (</span><span><em>Amaranthus</em><em> cruentus</em></span><span>) grain<span> starch and protein rich fractions as microcapsules’ wall materials to carrier β-carotene was evaluated. Microcapsules were produced by spray-drying and their morphological and physicochemical characterisation was carried out. The microcapsules presented a spherical shape (particle size distribution: 0.3–30 µm) and encapsulation efficiencies ranging from 64 % to 69 %. Results showed that protein-based microcapsules had better β-carotene storage stability as compared to starch-based microcapsules (at 8 and 25 °C). β-carotene release kinetics at 37 °C and pH 7.4 could be mainly described by structural-relaxation phenomenon using the linear superposition model. Moreover, encapsulated β-carotene exhibited higher bioaccessibility than its free form after simulated in vitro digestion tests. Microcapsules did not affect cell viability at 0.0625 mg L</span></span><sup>−1</sup> of β-carotene. Thus, amaranth grain biopolymers-based microcapsules were successfully developed as promising β-carotene delivery systems to be added to food products and consequently, to improve their functionality.</p></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"33 \",\"pages\":\"Article 100287\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329122000363\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329122000363","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Exploring the performance of amaranth grain starch and protein microcapsules as β-carotene carrier systems for food applications
Underexploited sources of bio-based wall materials for bioactive compounds (such as β-carotene) encapsulation have gained increasing interest within the scientific community. In this study, the potential of amaranth (Amaranthus cruentus) grain starch and protein rich fractions as microcapsules’ wall materials to carrier β-carotene was evaluated. Microcapsules were produced by spray-drying and their morphological and physicochemical characterisation was carried out. The microcapsules presented a spherical shape (particle size distribution: 0.3–30 µm) and encapsulation efficiencies ranging from 64 % to 69 %. Results showed that protein-based microcapsules had better β-carotene storage stability as compared to starch-based microcapsules (at 8 and 25 °C). β-carotene release kinetics at 37 °C and pH 7.4 could be mainly described by structural-relaxation phenomenon using the linear superposition model. Moreover, encapsulated β-carotene exhibited higher bioaccessibility than its free form after simulated in vitro digestion tests. Microcapsules did not affect cell viability at 0.0625 mg L−1 of β-carotene. Thus, amaranth grain biopolymers-based microcapsules were successfully developed as promising β-carotene delivery systems to be added to food products and consequently, to improve their functionality.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.