Matthias Konrad-Schmolke, Ralf Halama, David Chew, Céline Heuzé, Jan De Hoog, Hana Ditterova
{"title":"变质石榴石中重稀土元素模式的热力学和动力学贡献辨析","authors":"Matthias Konrad-Schmolke, Ralf Halama, David Chew, Céline Heuzé, Jan De Hoog, Hana Ditterova","doi":"10.1111/jmg.12703","DOIUrl":null,"url":null,"abstract":"<p>Variations of rare earth element (REE) concentrations in metamorphic garnet are an important source of information of geodynamic and geochemical processes in the deeper Earth. In order to extract this information, the thermodynamic equilibrium and kinetic contributions of the REE uptake in garnet must be distinguished and quantified. Utilizing high-resolution trace element and μ-Raman mapping together with combined thermodynamic–geochemical–diffusion models, we demonstrate that the equilibrium and kinetic aspects of the REE uptake in metamorphic garnet can be discriminated by interpreting 2D trace element mapping in a single sample. The heavy (H) REE (Tb to Lu) zoning in the investigated garnet from a high-pressure blueschist comprises an inner part with an overall decrease from core to inner rim, followed by a concentric zone of HREE enrichment and a drastic HREE decrease towards the outermost rim. The central peak in the garnet core decreases in intensity with decreasing atomic number of the REE. The broad overall shape of this pattern resembles those often observed in metamorphic garnet from different rock types and tectonic settings. Superimposed on this trend is a concentric pattern of minor recurring fluctuations in the HREE concentrations with at least six regularly spaced sets of peaks and troughs along the entire garnet radius. Comparison of the observed inclusion suite, the trace element maps and thermodynamic–geochemical models show that the inner part with decreasing HREE concentrations results from fractional garnet growth in an unchanged mineral assemblage, whereas the REE enrichment zone is caused by the breakdown of titanite. We suggest that the width of the central peak is controlled by the bulk permeability of the interconnected transport matrix and the fraction of matrix minerals that the garnet equilibrates with. The superimposed REE fluctuations result from changing element transport properties of the host rock and mark recurring changes from equilibrium REE uptake to transport-limited REE uptake in garnet. Such fluctuating element transport properties can be best explained by pulse-like fluid fluxes that rhythmically change the interconnectivity of the intercrystalline transport matrix. Increasing numbers of published spatially highly resolved REE analyses show that such trace element fluctuations are common in metamorphic garnet indicating that recurring changes in rock permeabilities due to pulsed fluid fluxes are a common phenomenon during metamorphism.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":"41 4","pages":"465-490"},"PeriodicalIF":3.5000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmg.12703","citationCount":"5","resultStr":"{\"title\":\"Discrimination of thermodynamic and kinetic contributions to the heavy rare earth element patterns in metamorphic garnet\",\"authors\":\"Matthias Konrad-Schmolke, Ralf Halama, David Chew, Céline Heuzé, Jan De Hoog, Hana Ditterova\",\"doi\":\"10.1111/jmg.12703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Variations of rare earth element (REE) concentrations in metamorphic garnet are an important source of information of geodynamic and geochemical processes in the deeper Earth. In order to extract this information, the thermodynamic equilibrium and kinetic contributions of the REE uptake in garnet must be distinguished and quantified. Utilizing high-resolution trace element and μ-Raman mapping together with combined thermodynamic–geochemical–diffusion models, we demonstrate that the equilibrium and kinetic aspects of the REE uptake in metamorphic garnet can be discriminated by interpreting 2D trace element mapping in a single sample. The heavy (H) REE (Tb to Lu) zoning in the investigated garnet from a high-pressure blueschist comprises an inner part with an overall decrease from core to inner rim, followed by a concentric zone of HREE enrichment and a drastic HREE decrease towards the outermost rim. The central peak in the garnet core decreases in intensity with decreasing atomic number of the REE. The broad overall shape of this pattern resembles those often observed in metamorphic garnet from different rock types and tectonic settings. Superimposed on this trend is a concentric pattern of minor recurring fluctuations in the HREE concentrations with at least six regularly spaced sets of peaks and troughs along the entire garnet radius. Comparison of the observed inclusion suite, the trace element maps and thermodynamic–geochemical models show that the inner part with decreasing HREE concentrations results from fractional garnet growth in an unchanged mineral assemblage, whereas the REE enrichment zone is caused by the breakdown of titanite. We suggest that the width of the central peak is controlled by the bulk permeability of the interconnected transport matrix and the fraction of matrix minerals that the garnet equilibrates with. The superimposed REE fluctuations result from changing element transport properties of the host rock and mark recurring changes from equilibrium REE uptake to transport-limited REE uptake in garnet. Such fluctuating element transport properties can be best explained by pulse-like fluid fluxes that rhythmically change the interconnectivity of the intercrystalline transport matrix. Increasing numbers of published spatially highly resolved REE analyses show that such trace element fluctuations are common in metamorphic garnet indicating that recurring changes in rock permeabilities due to pulsed fluid fluxes are a common phenomenon during metamorphism.</p>\",\"PeriodicalId\":16472,\"journal\":{\"name\":\"Journal of Metamorphic Geology\",\"volume\":\"41 4\",\"pages\":\"465-490\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmg.12703\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Metamorphic Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12703\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12703","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Discrimination of thermodynamic and kinetic contributions to the heavy rare earth element patterns in metamorphic garnet
Variations of rare earth element (REE) concentrations in metamorphic garnet are an important source of information of geodynamic and geochemical processes in the deeper Earth. In order to extract this information, the thermodynamic equilibrium and kinetic contributions of the REE uptake in garnet must be distinguished and quantified. Utilizing high-resolution trace element and μ-Raman mapping together with combined thermodynamic–geochemical–diffusion models, we demonstrate that the equilibrium and kinetic aspects of the REE uptake in metamorphic garnet can be discriminated by interpreting 2D trace element mapping in a single sample. The heavy (H) REE (Tb to Lu) zoning in the investigated garnet from a high-pressure blueschist comprises an inner part with an overall decrease from core to inner rim, followed by a concentric zone of HREE enrichment and a drastic HREE decrease towards the outermost rim. The central peak in the garnet core decreases in intensity with decreasing atomic number of the REE. The broad overall shape of this pattern resembles those often observed in metamorphic garnet from different rock types and tectonic settings. Superimposed on this trend is a concentric pattern of minor recurring fluctuations in the HREE concentrations with at least six regularly spaced sets of peaks and troughs along the entire garnet radius. Comparison of the observed inclusion suite, the trace element maps and thermodynamic–geochemical models show that the inner part with decreasing HREE concentrations results from fractional garnet growth in an unchanged mineral assemblage, whereas the REE enrichment zone is caused by the breakdown of titanite. We suggest that the width of the central peak is controlled by the bulk permeability of the interconnected transport matrix and the fraction of matrix minerals that the garnet equilibrates with. The superimposed REE fluctuations result from changing element transport properties of the host rock and mark recurring changes from equilibrium REE uptake to transport-limited REE uptake in garnet. Such fluctuating element transport properties can be best explained by pulse-like fluid fluxes that rhythmically change the interconnectivity of the intercrystalline transport matrix. Increasing numbers of published spatially highly resolved REE analyses show that such trace element fluctuations are common in metamorphic garnet indicating that recurring changes in rock permeabilities due to pulsed fluid fluxes are a common phenomenon during metamorphism.
期刊介绍:
The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.