Yan Xie, Linawati Sutrisno, Toru Yoshitomi, N. Kawazoe, Yingnan Yang, Guoping Chen
{"title":"胶原支架间充质干细胞的三维培养和软骨分化","authors":"Yan Xie, Linawati Sutrisno, Toru Yoshitomi, N. Kawazoe, Yingnan Yang, Guoping Chen","doi":"10.1088/1748-605X/ac61f9","DOIUrl":null,"url":null,"abstract":"Interconnected scaffolds are useful for promoting the chondrogenic differentiation of stem cells. Collagen scaffolds with interconnected pore structures were fabricated with poly(lactic acid-co-glycolic acid) (PLGA) sponge templates. The PLGA-templated collagen scaffolds were used to culture human bone marrow-derived mesenchymal stem cells (hMSCs) to investigate their promotive effect on the chondrogenic differentiation of hMSCs. The cells adhered to the scaffolds with a homogeneous distribution and proliferated with culture time. The expression of chondrogenesis-related genes was upregulated, and abundant cartilaginous matrices were detected. After subcutaneous implantation, the PLGA-templated collagen scaffolds further enhanced the production of cartilaginous matrices and the mechanical properties of the implants. The good interconnectivity of the PLGA-templated collagen scaffolds promoted chondrogenic differentiation. In particular, the collagen scaffolds prepared with large pore-bearing PLGA sponge templates showed the highest promotive effect.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Three-dimensional culture and chondrogenic differentiation of mesenchymal stem cells in interconnected collagen scaffolds\",\"authors\":\"Yan Xie, Linawati Sutrisno, Toru Yoshitomi, N. Kawazoe, Yingnan Yang, Guoping Chen\",\"doi\":\"10.1088/1748-605X/ac61f9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interconnected scaffolds are useful for promoting the chondrogenic differentiation of stem cells. Collagen scaffolds with interconnected pore structures were fabricated with poly(lactic acid-co-glycolic acid) (PLGA) sponge templates. The PLGA-templated collagen scaffolds were used to culture human bone marrow-derived mesenchymal stem cells (hMSCs) to investigate their promotive effect on the chondrogenic differentiation of hMSCs. The cells adhered to the scaffolds with a homogeneous distribution and proliferated with culture time. The expression of chondrogenesis-related genes was upregulated, and abundant cartilaginous matrices were detected. After subcutaneous implantation, the PLGA-templated collagen scaffolds further enhanced the production of cartilaginous matrices and the mechanical properties of the implants. The good interconnectivity of the PLGA-templated collagen scaffolds promoted chondrogenic differentiation. In particular, the collagen scaffolds prepared with large pore-bearing PLGA sponge templates showed the highest promotive effect.\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ac61f9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ac61f9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Three-dimensional culture and chondrogenic differentiation of mesenchymal stem cells in interconnected collagen scaffolds
Interconnected scaffolds are useful for promoting the chondrogenic differentiation of stem cells. Collagen scaffolds with interconnected pore structures were fabricated with poly(lactic acid-co-glycolic acid) (PLGA) sponge templates. The PLGA-templated collagen scaffolds were used to culture human bone marrow-derived mesenchymal stem cells (hMSCs) to investigate their promotive effect on the chondrogenic differentiation of hMSCs. The cells adhered to the scaffolds with a homogeneous distribution and proliferated with culture time. The expression of chondrogenesis-related genes was upregulated, and abundant cartilaginous matrices were detected. After subcutaneous implantation, the PLGA-templated collagen scaffolds further enhanced the production of cartilaginous matrices and the mechanical properties of the implants. The good interconnectivity of the PLGA-templated collagen scaffolds promoted chondrogenic differentiation. In particular, the collagen scaffolds prepared with large pore-bearing PLGA sponge templates showed the highest promotive effect.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters