基于时空注意机制的高速公路收费站多步交通量预测模型

Q2 Engineering Archives of Transport Pub Date : 2022-03-31 DOI:10.5604/01.3001.0015.8148
Zijing Huang, Peiqun Lin, Xukun Lin, Chuhao Zhou, Tongge Huang
{"title":"基于时空注意机制的高速公路收费站多步交通量预测模型","authors":"Zijing Huang, Peiqun Lin, Xukun Lin, Chuhao Zhou, Tongge Huang","doi":"10.5604/01.3001.0015.8148","DOIUrl":null,"url":null,"abstract":"As the fundamental part of other Intelligent Transportation Systems (ITS) applications, short-term traffic volume prediction plays an important role in various intelligent transportation tasks, such as traffic management, traffic signal control and route planning. Although Neural-network-based traffic prediction methods can produce good results, most of the models can’t be explained in an intuitive way. In this paper, we not only proposed a model that increase the short-term prediction accuracy of the traffic volume, but also improved the interpretability of the model by analyzing the internal attention score learnt by the model. we propose a spatiotemporal attention mechanism-based multistep traffic volume prediction model (SAMM). Inside the model, an LSTM-based Encoder-Decoder network with a hybrid attention mechanism is introduced, which consists of spatial attention and temporal attention. In the first level, the local and global spatial attention mechanisms considering the micro traffic evolution and macro pattern similarity, respectively, are applied to capture and amplify the features from the highly correlated entrance stations. In the second level, a temporal attention mechanism is employed to amplify the features from the time steps captured as contributing more to the future exit volume. Considering the time-dependent characteristics and the continuity of the recent evolutionary traffic volume trend, the timestamp features and historical exit volume series of target stations are included as the external inputs. An experiment is conducted using data from the highway toll collection system of Guangdong Province, China. By extracting and analyzing the weights of the spatial and temporal attention layers, the contributions of the intermediate parameters are revealed and explained with knowledge acquired by historical statistics. The results show that the proposed model outperforms the state-of-the-art model by 29.51% in terms of MSE, 13.93% in terms of MAE, and 5.69% in terms of MAPE. The effectiveness of the Encoder-Decoder framework and the attention mechanism are also verified.\n\n","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spatiotemporal attention mechanism-based multistep traffic volume prediction model for highway toll stations\",\"authors\":\"Zijing Huang, Peiqun Lin, Xukun Lin, Chuhao Zhou, Tongge Huang\",\"doi\":\"10.5604/01.3001.0015.8148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the fundamental part of other Intelligent Transportation Systems (ITS) applications, short-term traffic volume prediction plays an important role in various intelligent transportation tasks, such as traffic management, traffic signal control and route planning. Although Neural-network-based traffic prediction methods can produce good results, most of the models can’t be explained in an intuitive way. In this paper, we not only proposed a model that increase the short-term prediction accuracy of the traffic volume, but also improved the interpretability of the model by analyzing the internal attention score learnt by the model. we propose a spatiotemporal attention mechanism-based multistep traffic volume prediction model (SAMM). Inside the model, an LSTM-based Encoder-Decoder network with a hybrid attention mechanism is introduced, which consists of spatial attention and temporal attention. In the first level, the local and global spatial attention mechanisms considering the micro traffic evolution and macro pattern similarity, respectively, are applied to capture and amplify the features from the highly correlated entrance stations. In the second level, a temporal attention mechanism is employed to amplify the features from the time steps captured as contributing more to the future exit volume. Considering the time-dependent characteristics and the continuity of the recent evolutionary traffic volume trend, the timestamp features and historical exit volume series of target stations are included as the external inputs. An experiment is conducted using data from the highway toll collection system of Guangdong Province, China. By extracting and analyzing the weights of the spatial and temporal attention layers, the contributions of the intermediate parameters are revealed and explained with knowledge acquired by historical statistics. The results show that the proposed model outperforms the state-of-the-art model by 29.51% in terms of MSE, 13.93% in terms of MAE, and 5.69% in terms of MAPE. The effectiveness of the Encoder-Decoder framework and the attention mechanism are also verified.\\n\\n\",\"PeriodicalId\":53541,\"journal\":{\"name\":\"Archives of Transport\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Transport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0015.8148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Transport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.8148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

作为其他智能交通系统(ITS)应用的基础部分,短期交通量预测在各种智能交通任务中发挥着重要作用,如交通管理、交通信号控制和路线规划。尽管基于神经网络的交通预测方法可以产生良好的结果,但大多数模型都不能以直观的方式解释。在本文中,我们不仅提出了一个模型来提高交通量的短期预测精度,而且通过分析模型学习的内部注意力得分来提高模型的可解释性。我们提出了一种基于时空注意机制的多步交通量预测模型(SAMM)。在模型内部,引入了一种基于LSTM的编码器-解码器网络,该网络具有混合注意力机制,由空间注意力和时间注意力组成。在第一层次中,分别考虑微观交通演变和宏观模式相似性的局部和全局空间注意机制被应用于捕捉和放大高度相关入口站的特征。在第二个层次中,采用时间注意力机制来放大捕捉到的时间步长的特征,因为这对未来的退出量有更大的贡献。考虑到时间依赖性和近期交通量演化趋势的连续性,将目标站点的时间戳特征和历史出口交通量序列作为外部输入。利用广东省高速公路收费系统的数据进行了试验。通过提取和分析空间和时间注意力层的权重,利用历史统计学获得的知识来揭示和解释中间参数的贡献。结果表明,所提出的模型在MSE方面优于最先进的模型29.51%,在MAE方面优于13.93%,在MAPE方面优于5.69%。验证了编码器-解码器框架和注意力机制的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatiotemporal attention mechanism-based multistep traffic volume prediction model for highway toll stations
As the fundamental part of other Intelligent Transportation Systems (ITS) applications, short-term traffic volume prediction plays an important role in various intelligent transportation tasks, such as traffic management, traffic signal control and route planning. Although Neural-network-based traffic prediction methods can produce good results, most of the models can’t be explained in an intuitive way. In this paper, we not only proposed a model that increase the short-term prediction accuracy of the traffic volume, but also improved the interpretability of the model by analyzing the internal attention score learnt by the model. we propose a spatiotemporal attention mechanism-based multistep traffic volume prediction model (SAMM). Inside the model, an LSTM-based Encoder-Decoder network with a hybrid attention mechanism is introduced, which consists of spatial attention and temporal attention. In the first level, the local and global spatial attention mechanisms considering the micro traffic evolution and macro pattern similarity, respectively, are applied to capture and amplify the features from the highly correlated entrance stations. In the second level, a temporal attention mechanism is employed to amplify the features from the time steps captured as contributing more to the future exit volume. Considering the time-dependent characteristics and the continuity of the recent evolutionary traffic volume trend, the timestamp features and historical exit volume series of target stations are included as the external inputs. An experiment is conducted using data from the highway toll collection system of Guangdong Province, China. By extracting and analyzing the weights of the spatial and temporal attention layers, the contributions of the intermediate parameters are revealed and explained with knowledge acquired by historical statistics. The results show that the proposed model outperforms the state-of-the-art model by 29.51% in terms of MSE, 13.93% in terms of MAE, and 5.69% in terms of MAPE. The effectiveness of the Encoder-Decoder framework and the attention mechanism are also verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Transport
Archives of Transport Engineering-Automotive Engineering
CiteScore
2.50
自引率
0.00%
发文量
26
审稿时长
24 weeks
期刊最新文献
Proactive safety assessment of urban through-roads based on GPS data The Multidimensional Threats of Unmanned Aerial Systems: Exploring Biomechanical, Technical, Operational, and Legal Solutions for Ensuring Safety and Security Predicting severe wildlife vehicle crashes (WVCs) on New Hampshire roads using a hybrid generalized additive model Research on port AGV trajectory tracking control based on improved fuzzy sliding mode control Suitable law-based location selection of high-power electric vehicles charging stations on the TEN-T core network for sustainability: a case of Poland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1