{"title":"评估ASCE 41 - 17基于性能的优化设计钢弯矩框架规定","authors":"M. Ebadijalal, M. Shahrouzi","doi":"10.1002/tal.1977","DOIUrl":null,"url":null,"abstract":"In this study, the ASCE 41‐17 nonlinear static procedure for steel moment‐resisting frames is evaluated using a three‐phase constraint handling procedure. For the first time, advanced performance measures of ASCE 41‐17 are quantified during the optimization process by constructing concentrated plasticity models of the standard. Covariance matrix adaptation in evolution strategies (CMA‐ES) is used to obtain optimal designs for three‐ and nine‐story illustrative examples. Active and inactive constraints are discussed in the current performance‐based design methodology as a guide for future research. The seismic evaluation procedure outlined in FEMA P695 is applied to 147 optimal designs. Plastic hinge models explicitly simulate cyclic deterioration in nonlinear dynamic analyses. The numerical results conclusively demonstrate that the design procedure provides an acceptable margin of safety from collapse of the treated frames. Moreover, there is no significant relationship between the structural weights and the collapse margin ratios for such optimally designed structures.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluating ASCE 41‐17 performance‐based provisions on optimally designed steel moment frames\",\"authors\":\"M. Ebadijalal, M. Shahrouzi\",\"doi\":\"10.1002/tal.1977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the ASCE 41‐17 nonlinear static procedure for steel moment‐resisting frames is evaluated using a three‐phase constraint handling procedure. For the first time, advanced performance measures of ASCE 41‐17 are quantified during the optimization process by constructing concentrated plasticity models of the standard. Covariance matrix adaptation in evolution strategies (CMA‐ES) is used to obtain optimal designs for three‐ and nine‐story illustrative examples. Active and inactive constraints are discussed in the current performance‐based design methodology as a guide for future research. The seismic evaluation procedure outlined in FEMA P695 is applied to 147 optimal designs. Plastic hinge models explicitly simulate cyclic deterioration in nonlinear dynamic analyses. The numerical results conclusively demonstrate that the design procedure provides an acceptable margin of safety from collapse of the treated frames. Moreover, there is no significant relationship between the structural weights and the collapse margin ratios for such optimally designed structures.\",\"PeriodicalId\":49470,\"journal\":{\"name\":\"Structural Design of Tall and Special Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Design of Tall and Special Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/tal.1977\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.1977","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Evaluating ASCE 41‐17 performance‐based provisions on optimally designed steel moment frames
In this study, the ASCE 41‐17 nonlinear static procedure for steel moment‐resisting frames is evaluated using a three‐phase constraint handling procedure. For the first time, advanced performance measures of ASCE 41‐17 are quantified during the optimization process by constructing concentrated plasticity models of the standard. Covariance matrix adaptation in evolution strategies (CMA‐ES) is used to obtain optimal designs for three‐ and nine‐story illustrative examples. Active and inactive constraints are discussed in the current performance‐based design methodology as a guide for future research. The seismic evaluation procedure outlined in FEMA P695 is applied to 147 optimal designs. Plastic hinge models explicitly simulate cyclic deterioration in nonlinear dynamic analyses. The numerical results conclusively demonstrate that the design procedure provides an acceptable margin of safety from collapse of the treated frames. Moreover, there is no significant relationship between the structural weights and the collapse margin ratios for such optimally designed structures.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.