通过贝叶斯优化寻求更好的夏普比

IF 1.1 4区 经济学 Q3 BUSINESS, FINANCE Journal of Portfolio Management Pub Date : 2023-05-15 DOI:10.3905/jpm.2023.1.497
Peng Liu
{"title":"通过贝叶斯优化寻求更好的夏普比","authors":"Peng Liu","doi":"10.3905/jpm.2023.1.497","DOIUrl":null,"url":null,"abstract":"Developing an excellent quantitative trading strategy to obtain a high Sharpe ratio requires optimizing several parameters at the same time. Example parameters include the window length of a moving average sequence, the choice of trading instruments, and the thresholds used to generate trading signals. Simultaneously optimizing all these parameters to seek a high Sharpe ratio is a daunting and time-consuming task, partly because of the unknown mechanism determining the Sharpe ratio. This article proposes using Bayesian optimization to systematically search for the optimal parameter configuration that leads to a high Sharpe ratio. The author shows that the proposed intelligent search strategy performs better than manual search, a common practice that proves to be inefficient. The author’s framework also can easily be extended to other parameter selection tasks in portfolio optimization and risk management.","PeriodicalId":53670,"journal":{"name":"Journal of Portfolio Management","volume":"49 1","pages":"35 - 43"},"PeriodicalIF":1.1000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seeking Better Sharpe Ratio via Bayesian Optimization\",\"authors\":\"Peng Liu\",\"doi\":\"10.3905/jpm.2023.1.497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing an excellent quantitative trading strategy to obtain a high Sharpe ratio requires optimizing several parameters at the same time. Example parameters include the window length of a moving average sequence, the choice of trading instruments, and the thresholds used to generate trading signals. Simultaneously optimizing all these parameters to seek a high Sharpe ratio is a daunting and time-consuming task, partly because of the unknown mechanism determining the Sharpe ratio. This article proposes using Bayesian optimization to systematically search for the optimal parameter configuration that leads to a high Sharpe ratio. The author shows that the proposed intelligent search strategy performs better than manual search, a common practice that proves to be inefficient. The author’s framework also can easily be extended to other parameter selection tasks in portfolio optimization and risk management.\",\"PeriodicalId\":53670,\"journal\":{\"name\":\"Journal of Portfolio Management\",\"volume\":\"49 1\",\"pages\":\"35 - 43\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Portfolio Management\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.3905/jpm.2023.1.497\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Portfolio Management","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.3905/jpm.2023.1.497","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

开发一个优秀的量化交易策略以获得高夏普比率需要同时优化几个参数。示例参数包括移动平均序列的窗口长度、交易工具的选择以及用于生成交易信号的阈值。同时优化所有这些参数以寻求高夏普比是一项艰巨而耗时的任务,部分原因是确定夏普比的未知机制。本文提出使用贝叶斯优化来系统地搜索导致高夏普比的最优参数配置。作者表明,所提出的智能搜索策略比手动搜索性能更好,而手动搜索是一种被证明效率低下的常见做法。作者的框架也可以很容易地扩展到投资组合优化和风险管理中的其他参数选择任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seeking Better Sharpe Ratio via Bayesian Optimization
Developing an excellent quantitative trading strategy to obtain a high Sharpe ratio requires optimizing several parameters at the same time. Example parameters include the window length of a moving average sequence, the choice of trading instruments, and the thresholds used to generate trading signals. Simultaneously optimizing all these parameters to seek a high Sharpe ratio is a daunting and time-consuming task, partly because of the unknown mechanism determining the Sharpe ratio. This article proposes using Bayesian optimization to systematically search for the optimal parameter configuration that leads to a high Sharpe ratio. The author shows that the proposed intelligent search strategy performs better than manual search, a common practice that proves to be inefficient. The author’s framework also can easily be extended to other parameter selection tasks in portfolio optimization and risk management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Portfolio Management
Journal of Portfolio Management Economics, Econometrics and Finance-Finance
CiteScore
2.20
自引率
28.60%
发文量
113
期刊介绍: Founded by Peter Bernstein in 1974, The Journal of Portfolio Management (JPM) is the definitive source of thought-provoking analysis and practical techniques in institutional investing. It offers cutting-edge research on asset allocation, performance measurement, market trends, risk management, portfolio optimization, and more. Each quarterly issue of JPM features articles by the most renowned researchers and practitioners—including Nobel laureates—whose works define modern portfolio theory.
期刊最新文献
Fixed Income Factors: Theory and Practice Peer Group Identification in Factor Portfolios: A Data-Driven Approach Factor Investing for Taxable Investors Return–Risk Analysis of Real Estate Tokens: An Asset Class of Its Own Sustainability Disclosure and Financial Performance: The Case of Private and Public Real Estate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1