RoboWalk:用于设计优化的增强人-机器人数学建模

IF 1.8 4区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Mathematical and Computer Modelling of Dynamical Systems Pub Date : 2021-01-02 DOI:10.1080/13873954.2021.1879874
S. Moosavian, Mahdi Nabipour, Farshid Absalan, Vahid Akbari
{"title":"RoboWalk:用于设计优化的增强人-机器人数学建模","authors":"S. Moosavian, Mahdi Nabipour, Farshid Absalan, Vahid Akbari","doi":"10.1080/13873954.2021.1879874","DOIUrl":null,"url":null,"abstract":"ABSTRACT Utilizing exoskeleton devices to help elderly or empower workers is a growing field of research in robotics. The structure of an exoskeleton can vary depending on user’s physical dimensions, joints or muscles targeted for assistance, and maximum achievable actuator torque. In this research, a Human-Model-In-the-Loop (HMIL) constrained optimization technique is proposed to design the RoboWalk lower-limb exoskeleton. RoboWalk is an under-actuated non-anthropomorphic assistive robot, that besides applying the desired assistive force, exerts an undesirable disturbing force leading to the user’s fall. The HMIL method uses the augmented human-robot 2D model to take RoboWalk and human body’s joint torques into account during optimization. The superiority of HMIL method is proven by comparing the results with other strategies in the literature. Obtained results reveal elimination of the disturbing forces, 2 N.m. reduction in average human knee-joint torque, and significant decrease in the actuator required torque.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"27 1","pages":"373 - 404"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2021.1879874","citationCount":"5","resultStr":"{\"title\":\"RoboWalk: augmented human-robot mathematical modelling for design optimization\",\"authors\":\"S. Moosavian, Mahdi Nabipour, Farshid Absalan, Vahid Akbari\",\"doi\":\"10.1080/13873954.2021.1879874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Utilizing exoskeleton devices to help elderly or empower workers is a growing field of research in robotics. The structure of an exoskeleton can vary depending on user’s physical dimensions, joints or muscles targeted for assistance, and maximum achievable actuator torque. In this research, a Human-Model-In-the-Loop (HMIL) constrained optimization technique is proposed to design the RoboWalk lower-limb exoskeleton. RoboWalk is an under-actuated non-anthropomorphic assistive robot, that besides applying the desired assistive force, exerts an undesirable disturbing force leading to the user’s fall. The HMIL method uses the augmented human-robot 2D model to take RoboWalk and human body’s joint torques into account during optimization. The superiority of HMIL method is proven by comparing the results with other strategies in the literature. Obtained results reveal elimination of the disturbing forces, 2 N.m. reduction in average human knee-joint torque, and significant decrease in the actuator required torque.\",\"PeriodicalId\":49871,\"journal\":{\"name\":\"Mathematical and Computer Modelling of Dynamical Systems\",\"volume\":\"27 1\",\"pages\":\"373 - 404\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13873954.2021.1879874\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical and Computer Modelling of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/13873954.2021.1879874\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2021.1879874","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5

摘要

摘要利用外骨骼设备帮助老年人或增强工人能力是机器人领域一个不断发展的研究领域。外骨骼的结构可以根据用户的身体尺寸、需要帮助的关节或肌肉以及可实现的最大致动器扭矩而变化。在本研究中,提出了一种人体模型在环(HMIL)约束优化技术来设计RoboWalk下肢外骨骼。RoboWalk是一种驱动不足的非拟人辅助机器人,除了施加所需的辅助力外,还会施加不希望的干扰力,导致用户摔倒。HMIL方法使用增强的人类机器人2D模型,在优化过程中考虑RoboWalk和人体的关节力矩。通过与文献中其他策略的比较,证明了HMIL方法的优越性。所获得的结果显示干扰力的消除,人类膝关节的平均扭矩降低了2N.m,致动器所需扭矩显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RoboWalk: augmented human-robot mathematical modelling for design optimization
ABSTRACT Utilizing exoskeleton devices to help elderly or empower workers is a growing field of research in robotics. The structure of an exoskeleton can vary depending on user’s physical dimensions, joints or muscles targeted for assistance, and maximum achievable actuator torque. In this research, a Human-Model-In-the-Loop (HMIL) constrained optimization technique is proposed to design the RoboWalk lower-limb exoskeleton. RoboWalk is an under-actuated non-anthropomorphic assistive robot, that besides applying the desired assistive force, exerts an undesirable disturbing force leading to the user’s fall. The HMIL method uses the augmented human-robot 2D model to take RoboWalk and human body’s joint torques into account during optimization. The superiority of HMIL method is proven by comparing the results with other strategies in the literature. Obtained results reveal elimination of the disturbing forces, 2 N.m. reduction in average human knee-joint torque, and significant decrease in the actuator required torque.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.30%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems. The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application. MCMDS welcomes original articles on a range of topics including: -methods of modelling and simulation- automation of modelling- qualitative and modular modelling- data-based and learning-based modelling- uncertainties and the effects of modelling errors on system performance- application of modelling to complex real-world systems.
期刊最新文献
Multivariate doubly truncated moments for generalized skew-elliptical distributions with applications Model Reduction of Parametric Differential-Algebraic Systems by Balanced Truncation Analytical and approximate monotone solutions of the mixed order fractional nabla operators subject to bounded conditions Probabilistic degenerate central Bell polynomials Dynamic multibody model of a turntable ladder truck considering unloaded outriggers and sensitivity-based parameter identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1