数据有益,它有益于什么?:难民服务面临的挑战、机遇与数据创新

N. Smith, M. Idris, Friederike Schüür, Rita Ko
{"title":"数据有益,它有益于什么?:难民服务面临的挑战、机遇与数据创新","authors":"N. Smith, M. Idris, Friederike Schüür, Rita Ko","doi":"10.1162/99608f92.a6dbaef3","DOIUrl":null,"url":null,"abstract":"With 82.4 million forcibly displaced people, we need new approaches to the global refugee crisis. The Hive, the innovation lab at USA for UNHCR, uses data, machine learning (ML), and other emerging technologies to improve lives for refugees in coordination and collaboration with UNHCR (United Nations High Commissioner for Refugees), known as the UN Refugee Agency. We outline five challenges in successfully leveraging data and emerging technologies in the humanitarian space that tend to be overlooked and share the Hive’s approach and evolution to tackling these challenges. From assembling the right team and finding the right partners to inclusive and impactful data innovation, the Hive has worked to apply industry techniques to the nonprofit sector since 2015. We hope that our insights can help guide data innovation efforts at other organizations in the humanitarian space.","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data for Good, What Is It Good For?: Challenges, Opportunities, and Data Innovation in Service of Refugees\",\"authors\":\"N. Smith, M. Idris, Friederike Schüür, Rita Ko\",\"doi\":\"10.1162/99608f92.a6dbaef3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With 82.4 million forcibly displaced people, we need new approaches to the global refugee crisis. The Hive, the innovation lab at USA for UNHCR, uses data, machine learning (ML), and other emerging technologies to improve lives for refugees in coordination and collaboration with UNHCR (United Nations High Commissioner for Refugees), known as the UN Refugee Agency. We outline five challenges in successfully leveraging data and emerging technologies in the humanitarian space that tend to be overlooked and share the Hive’s approach and evolution to tackling these challenges. From assembling the right team and finding the right partners to inclusive and impactful data innovation, the Hive has worked to apply industry techniques to the nonprofit sector since 2015. We hope that our insights can help guide data innovation efforts at other organizations in the humanitarian space.\",\"PeriodicalId\":73195,\"journal\":{\"name\":\"Harvard data science review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Harvard data science review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/99608f92.a6dbaef3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harvard data science review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/99608f92.a6dbaef3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

8240万人被迫流离失所,我们需要新的方法来应对全球难民危机。Hive是美国联合国难民署的创新实验室,与联合国难民事务高级专员办事处(UNHCR)(即联合国难民机构)协调合作,利用数据、机器学习和其他新兴技术改善难民的生活。我们概述了在人道主义领域成功利用数据和新兴技术的五大挑战,这些挑战往往被忽视,并分享了蜂巢应对这些挑战的方法和演变。从组建合适的团队和寻找合适的合作伙伴到包容性和影响力的数据创新,Hive自2015年以来一直致力于将行业技术应用于非营利部门。我们希望我们的见解能够帮助指导人道主义领域其他组织的数据创新工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data for Good, What Is It Good For?: Challenges, Opportunities, and Data Innovation in Service of Refugees
With 82.4 million forcibly displaced people, we need new approaches to the global refugee crisis. The Hive, the innovation lab at USA for UNHCR, uses data, machine learning (ML), and other emerging technologies to improve lives for refugees in coordination and collaboration with UNHCR (United Nations High Commissioner for Refugees), known as the UN Refugee Agency. We outline five challenges in successfully leveraging data and emerging technologies in the humanitarian space that tend to be overlooked and share the Hive’s approach and evolution to tackling these challenges. From assembling the right team and finding the right partners to inclusive and impactful data innovation, the Hive has worked to apply industry techniques to the nonprofit sector since 2015. We hope that our insights can help guide data innovation efforts at other organizations in the humanitarian space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing the prognostic utility of clinical and radiomic features for COVID-19 patients admitted to ICU: challenges and lessons learned. Rejoinder: Building a Paradigm That Allows for the Possibility of Non-Ignorable Nonresponse Resolving the Credibility Crisis: Recommendations for Improving Predictive Algorithms for Clinical Utility The Birth of a New Discipline: Data Science Education Close to Refuge: Integrating AI and Human Insights for Intervention and Prevention: A Conversation With Seema Iyer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1