基于逻辑的机器学习在噪声环境下的弹性生物医学系统设计

Tousif Rahman, R. Shafik, Ole-Christoffer Granmo, A. Yakovlev
{"title":"基于逻辑的机器学习在噪声环境下的弹性生物医学系统设计","authors":"Tousif Rahman, R. Shafik, Ole-Christoffer Granmo, A. Yakovlev","doi":"10.3389/fcteg.2021.778118","DOIUrl":null,"url":null,"abstract":"Increased reliance on electronic health records and plethora of new sensor technologies has enabled the use of machine learning (ML) in medical diagnosis. This has opened up promising opportunities for faster and automated decision making, particularly in early and repetitive diagnostic routines. Nevertheless, there are also increased possibilities of data aberrance arising from environmentally induced noise. It is vital to create ML models that are resilient in the presence of data noise to minimize erroneous classifications that could be crucial. This study uses a recently proposed ML algorithm called the Tsetlin machine (TM) to study the robustness against noise-injected medical data. We test two different feature extraction methods, in conjunction with the TM, to explore how feature engineering can mitigate the impact of noise corruption. Our results show the TM is capable of effective classification even with a signal-to-noise ratio (SNR) of −15dB as its training parameters remain resilient to noise injection. We show that high testing data sensitivity can still be possible at very low SNRs through a balance of feature distribution–based discretization and a rule mining algorithm used as a noise filtering encoding method. Through this method we show how a smaller number of core features can be extracted from a noisy problem space resulting in reduced ML model complexity and memory footprint—in some cases up to 6x fewer training parameters while retaining equal or better performance. In addition, we investigate the cost of noise resilience in terms of energy when compared with recently proposed binarized neural networks.","PeriodicalId":73076,"journal":{"name":"Frontiers in control engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Resilient Biomedical Systems Design Under Noise Using Logic-Based Machine Learning\",\"authors\":\"Tousif Rahman, R. Shafik, Ole-Christoffer Granmo, A. Yakovlev\",\"doi\":\"10.3389/fcteg.2021.778118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increased reliance on electronic health records and plethora of new sensor technologies has enabled the use of machine learning (ML) in medical diagnosis. This has opened up promising opportunities for faster and automated decision making, particularly in early and repetitive diagnostic routines. Nevertheless, there are also increased possibilities of data aberrance arising from environmentally induced noise. It is vital to create ML models that are resilient in the presence of data noise to minimize erroneous classifications that could be crucial. This study uses a recently proposed ML algorithm called the Tsetlin machine (TM) to study the robustness against noise-injected medical data. We test two different feature extraction methods, in conjunction with the TM, to explore how feature engineering can mitigate the impact of noise corruption. Our results show the TM is capable of effective classification even with a signal-to-noise ratio (SNR) of −15dB as its training parameters remain resilient to noise injection. We show that high testing data sensitivity can still be possible at very low SNRs through a balance of feature distribution–based discretization and a rule mining algorithm used as a noise filtering encoding method. Through this method we show how a smaller number of core features can be extracted from a noisy problem space resulting in reduced ML model complexity and memory footprint—in some cases up to 6x fewer training parameters while retaining equal or better performance. In addition, we investigate the cost of noise resilience in terms of energy when compared with recently proposed binarized neural networks.\",\"PeriodicalId\":73076,\"journal\":{\"name\":\"Frontiers in control engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in control engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fcteg.2021.778118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in control engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcteg.2021.778118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对电子健康记录的日益依赖和大量新的传感器技术使得机器学习(ML)能够在医学诊断中使用。这为更快、自动化的决策开辟了很有希望的机会,尤其是在早期和重复的诊断程序中。尽管如此,环境噪声引起的数据失真的可能性也在增加。创建在存在数据噪声的情况下具有弹性的ML模型,以最大限度地减少可能至关重要的错误分类,这一点至关重要。这项研究使用了最近提出的一种名为Tsetlin机器(TM)的ML算法来研究对注入噪声的医疗数据的鲁棒性。我们结合TM测试了两种不同的特征提取方法,以探索特征工程如何减轻噪声破坏的影响。我们的结果表明,即使信噪比(SNR)为-15dB,TM也能够有效分类,因为其训练参数对噪声注入保持弹性。我们表明,通过基于特征分布的离散化和用作噪声滤波编码方法的规则挖掘算法的平衡,在非常低的SNR下仍然可以实现高测试数据灵敏度。通过这种方法,我们展示了如何从有噪声的问题空间中提取较少数量的核心特征,从而降低ML模型的复杂性和内存占用——在某些情况下,训练参数减少了6倍,同时保持了相同或更好的性能。此外,与最近提出的二值化神经网络相比,我们研究了噪声弹性在能量方面的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resilient Biomedical Systems Design Under Noise Using Logic-Based Machine Learning
Increased reliance on electronic health records and plethora of new sensor technologies has enabled the use of machine learning (ML) in medical diagnosis. This has opened up promising opportunities for faster and automated decision making, particularly in early and repetitive diagnostic routines. Nevertheless, there are also increased possibilities of data aberrance arising from environmentally induced noise. It is vital to create ML models that are resilient in the presence of data noise to minimize erroneous classifications that could be crucial. This study uses a recently proposed ML algorithm called the Tsetlin machine (TM) to study the robustness against noise-injected medical data. We test two different feature extraction methods, in conjunction with the TM, to explore how feature engineering can mitigate the impact of noise corruption. Our results show the TM is capable of effective classification even with a signal-to-noise ratio (SNR) of −15dB as its training parameters remain resilient to noise injection. We show that high testing data sensitivity can still be possible at very low SNRs through a balance of feature distribution–based discretization and a rule mining algorithm used as a noise filtering encoding method. Through this method we show how a smaller number of core features can be extracted from a noisy problem space resulting in reduced ML model complexity and memory footprint—in some cases up to 6x fewer training parameters while retaining equal or better performance. In addition, we investigate the cost of noise resilience in terms of energy when compared with recently proposed binarized neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reinforcement learning for path planning of free-floating space robotic manipulator with collision avoidance and observation noise Self-paced heart rate control during treadmill exercise for persons with gait impairment: a case study Editorial: Cooperative control and team behaviors in adversarial environments Erratum: Global versus local Lyapunov approach used in disturbance observer-based wind turbine control Teaming behavior in adversarial scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1