Adam优化函数与随机梯度下降在储蓄贷款合作社不良信用分类中的应用比较

Jaka Tirta Samudra, B. Hayadi
{"title":"Adam优化函数与随机梯度下降在储蓄贷款合作社不良信用分类中的应用比较","authors":"Jaka Tirta Samudra, B. Hayadi","doi":"10.24114/cess.v7i2.35210","DOIUrl":null,"url":null,"abstract":"Dengan pesatnya pertumbuhan koperasi di Indonesia, maka pemberian kredit bagi anggota koperasi semakin diperketat dengan melakukan survey terhadap calon penerima kredit melalui analisis 5C yaitu character, capacity, capital, condition of economic dan economic condition. agunan, sehingga risiko kredit macet dapat diminimalkan. Data mining dapat membantu koperasi dalam menganalisis kredit macet calon penerima kredit dengan cara membandingkan data lama (data pemberian kredit sebelumnya) dengan data baru (data survei calon penerima kredit) dan mengelompokkannya dalam bentuk klasifikasi kredit macet atau non-kredit. melakukan pinjaman. Penelitian ini membangun model klasifikasi kredit macet berdasarkan hasil analisis calon penerima kredit menggunakan algoritma multi layer perceptron. Berbagai fungsi stochastic gradient descent (SGD) dan optimasi Adam digunakan yang dievaluasi menggunakan validasi silang 5 kali lipat, 10 kali lipat, dan 20 kali lipat. Hasil yang diperoleh adalah optimasi Adam merupakan fungsi optimasi terbaik untuk mengklasifikasikan dataset kredit macet, hal ini dapat dilihat dari nilai akurasi sebesar 95,6%, nilai F1 sebesar 95,6%, nilai presisi sebesar 95,7%, dan nilai recall sebesar 95,6%.","PeriodicalId":53361,"journal":{"name":"CESS Journal of Computer Engineering System and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Adam's Optimization Function and Stochastic Gradient Descent on Bad Credit Classification of Savings and Loan Cooperatives Using Multilayer Perceptron\",\"authors\":\"Jaka Tirta Samudra, B. Hayadi\",\"doi\":\"10.24114/cess.v7i2.35210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dengan pesatnya pertumbuhan koperasi di Indonesia, maka pemberian kredit bagi anggota koperasi semakin diperketat dengan melakukan survey terhadap calon penerima kredit melalui analisis 5C yaitu character, capacity, capital, condition of economic dan economic condition. agunan, sehingga risiko kredit macet dapat diminimalkan. Data mining dapat membantu koperasi dalam menganalisis kredit macet calon penerima kredit dengan cara membandingkan data lama (data pemberian kredit sebelumnya) dengan data baru (data survei calon penerima kredit) dan mengelompokkannya dalam bentuk klasifikasi kredit macet atau non-kredit. melakukan pinjaman. Penelitian ini membangun model klasifikasi kredit macet berdasarkan hasil analisis calon penerima kredit menggunakan algoritma multi layer perceptron. Berbagai fungsi stochastic gradient descent (SGD) dan optimasi Adam digunakan yang dievaluasi menggunakan validasi silang 5 kali lipat, 10 kali lipat, dan 20 kali lipat. Hasil yang diperoleh adalah optimasi Adam merupakan fungsi optimasi terbaik untuk mengklasifikasikan dataset kredit macet, hal ini dapat dilihat dari nilai akurasi sebesar 95,6%, nilai F1 sebesar 95,6%, nilai presisi sebesar 95,7%, dan nilai recall sebesar 95,6%.\",\"PeriodicalId\":53361,\"journal\":{\"name\":\"CESS Journal of Computer Engineering System and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CESS Journal of Computer Engineering System and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24114/cess.v7i2.35210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CESS Journal of Computer Engineering System and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/cess.v7i2.35210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着印尼合作的迅速扩大,通过分析5C对候选信贷接受者进行调查,即特征、能力、资本、经济和经济状况,将向合作成员发放信贷的联系日益紧密。抵押品,因此可以将信贷风险降至最低。挖掘数据可以通过将旧数据(以前的信用数据)与新数据(数据调查候选者)进行比较,并以抵押贷款或非信用评级的形式对其进行分组,从而帮助合作分析抵押贷款信贷申请人。贷款。本研究基于候选人使用多层感知器算法对信用接受者的分析结果,建立了一个破碎的信用评级模型。使用了各种随机梯度下降(SGD)和Adam优化函数,这些函数使用交叉验证进行了5次、10次和20次评估。结果表明,Adam优化是对破碎信用集进行分类的最佳优化函数,其准确度值为95.6%,F1值为95.6%,准确度值95.7%,召回率值95.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Adam's Optimization Function and Stochastic Gradient Descent on Bad Credit Classification of Savings and Loan Cooperatives Using Multilayer Perceptron
Dengan pesatnya pertumbuhan koperasi di Indonesia, maka pemberian kredit bagi anggota koperasi semakin diperketat dengan melakukan survey terhadap calon penerima kredit melalui analisis 5C yaitu character, capacity, capital, condition of economic dan economic condition. agunan, sehingga risiko kredit macet dapat diminimalkan. Data mining dapat membantu koperasi dalam menganalisis kredit macet calon penerima kredit dengan cara membandingkan data lama (data pemberian kredit sebelumnya) dengan data baru (data survei calon penerima kredit) dan mengelompokkannya dalam bentuk klasifikasi kredit macet atau non-kredit. melakukan pinjaman. Penelitian ini membangun model klasifikasi kredit macet berdasarkan hasil analisis calon penerima kredit menggunakan algoritma multi layer perceptron. Berbagai fungsi stochastic gradient descent (SGD) dan optimasi Adam digunakan yang dievaluasi menggunakan validasi silang 5 kali lipat, 10 kali lipat, dan 20 kali lipat. Hasil yang diperoleh adalah optimasi Adam merupakan fungsi optimasi terbaik untuk mengklasifikasikan dataset kredit macet, hal ini dapat dilihat dari nilai akurasi sebesar 95,6%, nilai F1 sebesar 95,6%, nilai presisi sebesar 95,7%, dan nilai recall sebesar 95,6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
40
审稿时长
4 weeks
期刊最新文献
Implementation of the Multimedia Development Life Cycle in Making Educational Games About Indonesia Data Mining Algorithm Decision Tree Itterative Dechotomiser 3 (ID3) for Classification of Stroke Implementation of Weight Aggregated Sum Product Assessment (WASPAS) on the Selection of Online English Course Platforms Usability of Brain Tumor Detection Using the DNN (Deep Neural Network) Method Based on Medical Image on DICOM Performance Comparison Analysis of Multi Prime RSA and Multi Power RSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1