电力系统中的人工智能和数字双胞胎:趋势、协同效应和机遇

Zhiwei Shen, Felipe Arraño-Vargas, G. Konstantinou
{"title":"电力系统中的人工智能和数字双胞胎:趋势、协同效应和机遇","authors":"Zhiwei Shen, Felipe Arraño-Vargas, G. Konstantinou","doi":"10.12688/digitaltwin.17632.1","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) promises solutions to the challenges raised by the digitalization of power grids and their assets. Decision-making, forecasting and even operational optimization of grids and assets are just some of the solutions that AI algorithms can provide to operators, utilities and vendors. Nevertheless, barriers such as access to quality datasets, interpretability, repeatability, and availability of computational resources currently limit the extent of practical AI implementations. At the same time, Digital Twins (DTs) are foreseen as platforms that can overcome these barriers, and also provide a new environment for the development of enhanced and more intelligent applications. In this manuscript, we review the published literature to determine the existing capabilities and implementation challenges of AI algorithms in power systems, and classify AI-based applications based on their time scale to reveal their temporal sensitivity. By combining AI and DT, we outline multiple prospective use cases for AI-enhanced power grid and power asset DTs. Our review also identifies that the combination of AI-based solutions and DTs leverages new applications with the potential to fundamentally change multiple aspects of the power industry.","PeriodicalId":29831,"journal":{"name":"Digital Twin","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Artificial intelligence and digital twins in power systems: Trends, synergies and opportunities\",\"authors\":\"Zhiwei Shen, Felipe Arraño-Vargas, G. Konstantinou\",\"doi\":\"10.12688/digitaltwin.17632.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence (AI) promises solutions to the challenges raised by the digitalization of power grids and their assets. Decision-making, forecasting and even operational optimization of grids and assets are just some of the solutions that AI algorithms can provide to operators, utilities and vendors. Nevertheless, barriers such as access to quality datasets, interpretability, repeatability, and availability of computational resources currently limit the extent of practical AI implementations. At the same time, Digital Twins (DTs) are foreseen as platforms that can overcome these barriers, and also provide a new environment for the development of enhanced and more intelligent applications. In this manuscript, we review the published literature to determine the existing capabilities and implementation challenges of AI algorithms in power systems, and classify AI-based applications based on their time scale to reveal their temporal sensitivity. By combining AI and DT, we outline multiple prospective use cases for AI-enhanced power grid and power asset DTs. Our review also identifies that the combination of AI-based solutions and DTs leverages new applications with the potential to fundamentally change multiple aspects of the power industry.\",\"PeriodicalId\":29831,\"journal\":{\"name\":\"Digital Twin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Twin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/digitaltwin.17632.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Twin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/digitaltwin.17632.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人工智能有望解决电网及其资产数字化带来的挑战。电网和资产的决策、预测甚至运营优化只是人工智能算法可以为运营商、公用事业公司和供应商提供的一些解决方案。然而,访问高质量数据集、可解释性、可重复性和计算资源可用性等障碍目前限制了实际人工智能实现的范围。与此同时,数字双胞胎(DT)被视为可以克服这些障碍的平台,也为开发增强型和更智能的应用程序提供了新的环境。在这份手稿中,我们回顾了已发表的文献,以确定人工智能算法在电力系统中的现有能力和实现挑战,并根据其时间尺度对基于人工智能的应用进行分类,以揭示其时间敏感性。通过将人工智能和DT相结合,我们概述了人工智能增强电网和电力资产DT的多个前瞻性使用案例。我们的审查还发现,基于人工智能的解决方案和DT的结合利用了新的应用程序,有可能从根本上改变电力行业的多个方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence and digital twins in power systems: Trends, synergies and opportunities
Artificial Intelligence (AI) promises solutions to the challenges raised by the digitalization of power grids and their assets. Decision-making, forecasting and even operational optimization of grids and assets are just some of the solutions that AI algorithms can provide to operators, utilities and vendors. Nevertheless, barriers such as access to quality datasets, interpretability, repeatability, and availability of computational resources currently limit the extent of practical AI implementations. At the same time, Digital Twins (DTs) are foreseen as platforms that can overcome these barriers, and also provide a new environment for the development of enhanced and more intelligent applications. In this manuscript, we review the published literature to determine the existing capabilities and implementation challenges of AI algorithms in power systems, and classify AI-based applications based on their time scale to reveal their temporal sensitivity. By combining AI and DT, we outline multiple prospective use cases for AI-enhanced power grid and power asset DTs. Our review also identifies that the combination of AI-based solutions and DTs leverages new applications with the potential to fundamentally change multiple aspects of the power industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Twin
Digital Twin digital twin technologies-
自引率
0.00%
发文量
0
期刊介绍: Digital Twin is a rapid multidisciplinary open access publishing platform for state-of-the-art, basic, scientific and applied research on digital twin technologies. Digital Twin covers all areas related digital twin technologies, including broad fields such as smart manufacturing, civil and industrial engineering, healthcare, agriculture, and many others. The platform is open to submissions from researchers, practitioners and experts, and all articles will benefit from open peer review.  The aim of Digital Twin is to advance the state-of-the-art in digital twin research and encourage innovation by highlighting efficient, robust and sustainable multidisciplinary applications across a variety of fields. Challenges can be addressed using theoretical, methodological, and technological approaches. The scope of Digital Twin includes, but is not limited to, the following areas:  ● Digital twin concepts, architecture, and frameworks ● Digital twin theory and method ● Digital twin key technologies and tools ● Digital twin applications and case studies ● Digital twin implementation ● Digital twin services ● Digital twin security ● Digital twin standards Digital twin also focuses on applications within and across broad sectors including: ● Smart manufacturing ● Aviation and aerospace ● Smart cities and construction ● Healthcare and medicine ● Robotics ● Shipping, vehicles and railways ● Industrial engineering and engineering management ● Agriculture ● Mining ● Power, energy and environment Digital Twin features a range of article types including research articles, case studies, method articles, study protocols, software tools, systematic reviews, data notes, brief reports, and opinion articles.
期刊最新文献
Digital twin-based modeling of natural gas leakage and dispersion in urban utility tunnels Data-driven modeling in digital twin for power system anomaly detection Is it possible to develop a digital twin for noise monitoring in manufacturing? Modeling of cross-scale human activity for digital twin workshop Digital twinning of temperature fields for modular multilayer multiphase pipeline structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1