{"title":"重型货车道路损伤最小化的非线性被动悬架系统优化","authors":"Shailendra Kumar, A. Medhavi, Raghuvir Kumar","doi":"10.20855/IJAV.2020.25.11724","DOIUrl":null,"url":null,"abstract":"Major contributors to the road damage are Heavy Goods Vehicles (HGV), resulting in high maintenance costs of roads. This high cost makes it necessary to look into the issue seriously for minimizing the road damage. An Automobile Engineer can reduce road damage through the efficient design of a suspension system. The design involves satisfying the two conflicting criteria of riding comfort and vehicle handling with the restriction on the suspension travel. This paper involves designing an automobile suspension system, to improve the performance of the vehicle without a significant change in the cost of the suspension system and minimize road damage. To achieve the aforesaid objective, the use of a nonlinear passive suspension is suitable as compared to a linear passive suspension system. For the analysis, a HGV model of vehicle suspension has been considered. The suspension system considered for investigation comprises of a cubical nonlinear spring and a linear damper. Road damage has been represented by the fourth power of the tire dynamic load. A genetic algorithm has been used to optimize the half truck model to minimize road damage. The solution has been obtained using MATLAB and SIMULINK.","PeriodicalId":49185,"journal":{"name":"International Journal of Acoustics and Vibration","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimization of Nonlinear Passive Suspension System to Minimize Road Damage for Heavy Goods Vehicle\",\"authors\":\"Shailendra Kumar, A. Medhavi, Raghuvir Kumar\",\"doi\":\"10.20855/IJAV.2020.25.11724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Major contributors to the road damage are Heavy Goods Vehicles (HGV), resulting in high maintenance costs of roads. This high cost makes it necessary to look into the issue seriously for minimizing the road damage. An Automobile Engineer can reduce road damage through the efficient design of a suspension system. The design involves satisfying the two conflicting criteria of riding comfort and vehicle handling with the restriction on the suspension travel. This paper involves designing an automobile suspension system, to improve the performance of the vehicle without a significant change in the cost of the suspension system and minimize road damage. To achieve the aforesaid objective, the use of a nonlinear passive suspension is suitable as compared to a linear passive suspension system. For the analysis, a HGV model of vehicle suspension has been considered. The suspension system considered for investigation comprises of a cubical nonlinear spring and a linear damper. Road damage has been represented by the fourth power of the tire dynamic load. A genetic algorithm has been used to optimize the half truck model to minimize road damage. The solution has been obtained using MATLAB and SIMULINK.\",\"PeriodicalId\":49185,\"journal\":{\"name\":\"International Journal of Acoustics and Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Acoustics and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.20855/IJAV.2020.25.11724\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acoustics and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.20855/IJAV.2020.25.11724","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Optimization of Nonlinear Passive Suspension System to Minimize Road Damage for Heavy Goods Vehicle
Major contributors to the road damage are Heavy Goods Vehicles (HGV), resulting in high maintenance costs of roads. This high cost makes it necessary to look into the issue seriously for minimizing the road damage. An Automobile Engineer can reduce road damage through the efficient design of a suspension system. The design involves satisfying the two conflicting criteria of riding comfort and vehicle handling with the restriction on the suspension travel. This paper involves designing an automobile suspension system, to improve the performance of the vehicle without a significant change in the cost of the suspension system and minimize road damage. To achieve the aforesaid objective, the use of a nonlinear passive suspension is suitable as compared to a linear passive suspension system. For the analysis, a HGV model of vehicle suspension has been considered. The suspension system considered for investigation comprises of a cubical nonlinear spring and a linear damper. Road damage has been represented by the fourth power of the tire dynamic load. A genetic algorithm has been used to optimize the half truck model to minimize road damage. The solution has been obtained using MATLAB and SIMULINK.
期刊介绍:
The International Journal of Acoustics and Vibration (IJAV) is the refereed open-access journal of the International Institute of Acoustics and Vibration (IIAV). The IIAV is a non-profit international scientific society founded in 1995. The primary objective of the Institute is to advance the science of acoustics and vibration by creating an international organization that is responsive to the needs of scientists and engineers concerned with acoustics and vibration problems all around the world.
Manuscripts of articles, technical notes and letters-to-the-editor should be submitted to the Editor-in-Chief via the on-line submission system. Authors wishing to submit an article need to log in on the IJAV website first. Users logged into the website are able to submit new articles, track the status of their articles already submitted, upload revised articles, responses and/or rebuttals to reviewers, figures, biographies, photographs, copyright transfer agreements, and send comments to the editor. Each time the status of an article submitted changes, the author will also be notified automatically by email.
IIAV members (in good standing for at least six months) can publish in IJAV free of charge and their papers will be displayed on-line immediately after they have been edited and laid-out.
Non-IIAV members will be required to pay a mandatory Article Processing Charge (APC) of $200 USD if the manuscript is accepted for publication after review. The APC fee allows IIAV to make your research freely available to all readers using the Open Access model.
In addition, Non-IIAV members who pay an extra voluntary publication fee (EVPF) of $500 USD will be granted expedited publication in the IJAV Journal and their papers can be displayed on the Internet after acceptance. If the $200 USD (APC) publication fee is not honored, papers will not be published. Authors who do not pay the voluntary fixed fee of $500 USD will have their papers published but there may be a considerable delay.
The English text of the papers must be of high quality. If the text submitted is of low quality the manuscript will be more than likely rejected. For authors whose first language is not English, we recommend having their manuscripts reviewed and edited prior to submission by a native English speaker with scientific expertise. There are many commercial editing services which can provide this service at a cost to the authors.