W. Iqbal, M. Mekki, W. Rehman, B. Shahzad, U. Anwar, S. Mahmood, M. E. Talukder
{"title":"溶胶-凝胶法制备TiO2/CO3O4核/壳纳米粒子的电学性质","authors":"W. Iqbal, M. Mekki, W. Rehman, B. Shahzad, U. Anwar, S. Mahmood, M. E. Talukder","doi":"10.15251/djnb.2023.181.403","DOIUrl":null,"url":null,"abstract":"TiO2/Co3O4 core-shell nanoparticles were successfully synthesized by the sol-gel method in two steps: the first step is the sol-gel synthesis of Co3O4 nanoparticles, and the second step is the synthesis of TiO2/Co3O4 nanoparticles by sol-gel method. The obtained Co3O4 and TiO2/Co3O4 core-shell nanoparticles were investigated utilizing X-ray diffraction, scanning electron microscopy, Fourier transforms infrared spectroscopy, diffuse reflectance spectroscopy, and conductivity measurement. X-ray diffraction analysis showed the presence of both Co3O4 and TiO2 phases in TiO2/Co3O4 core-shell nanoparticles; co3o4 nanoparticles have a cubic shape, and TiO2 nanoparticles have a tetragonal shape. SEM images of Co3O4 nanoparticles show most of the particles are smoothly distributed, having separate boundaries, and images of TiO2/Co3O4 nanoparticles showed that with an increase in calcination temperature, the size of the core-shell nanoparticles also increases. FTIR spectrum of both confirms the synthesis of Co3O4 and TiO2/Co3O4 nanomaterials. Diffuse reflectance spectroscopy exhibited the band gaps of TiO2/Co3O4 core-shell nanoparticles decrease with the increase of the temperature. The conductivity of the TiO2/Co3O4 core-shell nanomaterials increases with an increase in temperature and also with an increase in frequency.","PeriodicalId":11233,"journal":{"name":"Digest Journal of Nanomaterials and Biostructures","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical properties of TiO2/CO3O4 core/shell nanoparticles synthesized by sol-gel method\",\"authors\":\"W. Iqbal, M. Mekki, W. Rehman, B. Shahzad, U. Anwar, S. Mahmood, M. E. Talukder\",\"doi\":\"10.15251/djnb.2023.181.403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TiO2/Co3O4 core-shell nanoparticles were successfully synthesized by the sol-gel method in two steps: the first step is the sol-gel synthesis of Co3O4 nanoparticles, and the second step is the synthesis of TiO2/Co3O4 nanoparticles by sol-gel method. The obtained Co3O4 and TiO2/Co3O4 core-shell nanoparticles were investigated utilizing X-ray diffraction, scanning electron microscopy, Fourier transforms infrared spectroscopy, diffuse reflectance spectroscopy, and conductivity measurement. X-ray diffraction analysis showed the presence of both Co3O4 and TiO2 phases in TiO2/Co3O4 core-shell nanoparticles; co3o4 nanoparticles have a cubic shape, and TiO2 nanoparticles have a tetragonal shape. SEM images of Co3O4 nanoparticles show most of the particles are smoothly distributed, having separate boundaries, and images of TiO2/Co3O4 nanoparticles showed that with an increase in calcination temperature, the size of the core-shell nanoparticles also increases. FTIR spectrum of both confirms the synthesis of Co3O4 and TiO2/Co3O4 nanomaterials. Diffuse reflectance spectroscopy exhibited the band gaps of TiO2/Co3O4 core-shell nanoparticles decrease with the increase of the temperature. The conductivity of the TiO2/Co3O4 core-shell nanomaterials increases with an increase in temperature and also with an increase in frequency.\",\"PeriodicalId\":11233,\"journal\":{\"name\":\"Digest Journal of Nanomaterials and Biostructures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest Journal of Nanomaterials and Biostructures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/djnb.2023.181.403\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest Journal of Nanomaterials and Biostructures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/djnb.2023.181.403","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrical properties of TiO2/CO3O4 core/shell nanoparticles synthesized by sol-gel method
TiO2/Co3O4 core-shell nanoparticles were successfully synthesized by the sol-gel method in two steps: the first step is the sol-gel synthesis of Co3O4 nanoparticles, and the second step is the synthesis of TiO2/Co3O4 nanoparticles by sol-gel method. The obtained Co3O4 and TiO2/Co3O4 core-shell nanoparticles were investigated utilizing X-ray diffraction, scanning electron microscopy, Fourier transforms infrared spectroscopy, diffuse reflectance spectroscopy, and conductivity measurement. X-ray diffraction analysis showed the presence of both Co3O4 and TiO2 phases in TiO2/Co3O4 core-shell nanoparticles; co3o4 nanoparticles have a cubic shape, and TiO2 nanoparticles have a tetragonal shape. SEM images of Co3O4 nanoparticles show most of the particles are smoothly distributed, having separate boundaries, and images of TiO2/Co3O4 nanoparticles showed that with an increase in calcination temperature, the size of the core-shell nanoparticles also increases. FTIR spectrum of both confirms the synthesis of Co3O4 and TiO2/Co3O4 nanomaterials. Diffuse reflectance spectroscopy exhibited the band gaps of TiO2/Co3O4 core-shell nanoparticles decrease with the increase of the temperature. The conductivity of the TiO2/Co3O4 core-shell nanomaterials increases with an increase in temperature and also with an increase in frequency.