{"title":"科学课堂中计算思维的系统回顾","authors":"A. Ogegbo, U. Ramnarain","doi":"10.1080/03057267.2021.1963580","DOIUrl":null,"url":null,"abstract":"ABSTRACT Computational thinking (CT) has been described as an essential skill that should be learned by everyone and can, therefore, be included in their skill set. Computational thinking uses essential principles in computer science for solving problems, understanding complex systems, and human behaviour. This way of thinking has significant consequences for teaching and learning science subjects at elementary and high school levels. In this review, we analyse and discuss the results from 23 studies and highlight the methodology, different strategies, and assessment practices used to promote the integration of computational thinking within science classrooms. We also give an overview of how computational thinking is being taught in science classrooms and describe tools available for teaching computational thinking in science instruction. Findings showed the value of using modelling-based pedagogy in incorporating key computational thinking skills within science instruction and suggests that educators should deploy effective technology tools to enhance the deductive and inductive teaching of science concepts using computational thinking framework.","PeriodicalId":49262,"journal":{"name":"Studies in Science Education","volume":"58 1","pages":"203 - 230"},"PeriodicalIF":4.7000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/03057267.2021.1963580","citationCount":"20","resultStr":"{\"title\":\"A systematic review of computational thinking in science classrooms\",\"authors\":\"A. Ogegbo, U. Ramnarain\",\"doi\":\"10.1080/03057267.2021.1963580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Computational thinking (CT) has been described as an essential skill that should be learned by everyone and can, therefore, be included in their skill set. Computational thinking uses essential principles in computer science for solving problems, understanding complex systems, and human behaviour. This way of thinking has significant consequences for teaching and learning science subjects at elementary and high school levels. In this review, we analyse and discuss the results from 23 studies and highlight the methodology, different strategies, and assessment practices used to promote the integration of computational thinking within science classrooms. We also give an overview of how computational thinking is being taught in science classrooms and describe tools available for teaching computational thinking in science instruction. Findings showed the value of using modelling-based pedagogy in incorporating key computational thinking skills within science instruction and suggests that educators should deploy effective technology tools to enhance the deductive and inductive teaching of science concepts using computational thinking framework.\",\"PeriodicalId\":49262,\"journal\":{\"name\":\"Studies in Science Education\",\"volume\":\"58 1\",\"pages\":\"203 - 230\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/03057267.2021.1963580\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Science Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1080/03057267.2021.1963580\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1080/03057267.2021.1963580","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
A systematic review of computational thinking in science classrooms
ABSTRACT Computational thinking (CT) has been described as an essential skill that should be learned by everyone and can, therefore, be included in their skill set. Computational thinking uses essential principles in computer science for solving problems, understanding complex systems, and human behaviour. This way of thinking has significant consequences for teaching and learning science subjects at elementary and high school levels. In this review, we analyse and discuss the results from 23 studies and highlight the methodology, different strategies, and assessment practices used to promote the integration of computational thinking within science classrooms. We also give an overview of how computational thinking is being taught in science classrooms and describe tools available for teaching computational thinking in science instruction. Findings showed the value of using modelling-based pedagogy in incorporating key computational thinking skills within science instruction and suggests that educators should deploy effective technology tools to enhance the deductive and inductive teaching of science concepts using computational thinking framework.
期刊介绍:
The central aim of Studies in Science Education is to publish review articles of the highest quality which provide analytical syntheses of research into key topics and issues in science education. In addressing this aim, the Editor and Editorial Advisory Board, are guided by a commitment to:
maintaining and developing the highest standards of scholarship associated with the journal;
publishing articles from as wide a range of authors as possible, in relation both to professional background and country of origin;
publishing articles which serve both to consolidate and reflect upon existing fields of study and to promote new areas for research activity.
Studies in Science Education will be of interest to all those involved in science education including: science education researchers, doctoral and masters students; science teachers at elementary, high school and university levels; science education policy makers; science education curriculum developers and text book writers.
Articles featured in Studies in Science Education have been made available either following invitation from the Editor or through potential contributors offering pieces. Given the substantial nature of the review articles, the Editor is willing to give informal feedback on the suitability of proposals though all contributions, whether invited or not, are subject to full peer review. A limited number of books of special interest and concern to those involved in science education are normally reviewed in each volume.