{"title":"蒙特卡罗无网格随机漫步法在选定标量椭圆问题中的应用","authors":"S. Milewski","doi":"10.24423/AOM.3111","DOIUrl":null,"url":null,"abstract":"The combined stochastic-deterministic approach, which may be applied to the numerical analysis of a wide range of scalar elliptic problems of civil engineering, is presented in this paper. It is based on the well-known Monte Carlo concept with a random walk procedure, in which series of random paths are constructed. Additionally, it incorporates selected features of the meshless finite difference method, especially star selection criteria and a local weighted function approximation. The approach leads to the explicit stochastic formula relating one unknown function value with all a-priori known data parameters. Therefore, it allows for a fast and effective estimation of the solution value at the selected point(s), without the necessity of generation of large systems of equations, combining all unknown values. In such a manner, the proposed approach develops and extends the original standard Monte Carlo one toward analysis of boundary value problems with more complex shape geometry, natural boundary conditions, non-homogeneous right-hand sides as well as anisotropic and non-linear material models. The paper is illustrated with numerical results of selected elliptic problems, including a torsion problem of a prismatic bar, a stationary heat flow analysis with anisotropic and non-linear material functions, as well as an inverse heat problem. Moreover, the appropriate coupling with other deterministic methods (e.g., the finite element method) is considered.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":"71 1","pages":"337-375"},"PeriodicalIF":1.1000,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of the Monte Carlo method with meshless random walk procedure to selected scalar elliptic problems\",\"authors\":\"S. Milewski\",\"doi\":\"10.24423/AOM.3111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combined stochastic-deterministic approach, which may be applied to the numerical analysis of a wide range of scalar elliptic problems of civil engineering, is presented in this paper. It is based on the well-known Monte Carlo concept with a random walk procedure, in which series of random paths are constructed. Additionally, it incorporates selected features of the meshless finite difference method, especially star selection criteria and a local weighted function approximation. The approach leads to the explicit stochastic formula relating one unknown function value with all a-priori known data parameters. Therefore, it allows for a fast and effective estimation of the solution value at the selected point(s), without the necessity of generation of large systems of equations, combining all unknown values. In such a manner, the proposed approach develops and extends the original standard Monte Carlo one toward analysis of boundary value problems with more complex shape geometry, natural boundary conditions, non-homogeneous right-hand sides as well as anisotropic and non-linear material models. The paper is illustrated with numerical results of selected elliptic problems, including a torsion problem of a prismatic bar, a stationary heat flow analysis with anisotropic and non-linear material functions, as well as an inverse heat problem. Moreover, the appropriate coupling with other deterministic methods (e.g., the finite element method) is considered.\",\"PeriodicalId\":8280,\"journal\":{\"name\":\"Archives of Mechanics\",\"volume\":\"71 1\",\"pages\":\"337-375\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24423/AOM.3111\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.3111","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Application of the Monte Carlo method with meshless random walk procedure to selected scalar elliptic problems
The combined stochastic-deterministic approach, which may be applied to the numerical analysis of a wide range of scalar elliptic problems of civil engineering, is presented in this paper. It is based on the well-known Monte Carlo concept with a random walk procedure, in which series of random paths are constructed. Additionally, it incorporates selected features of the meshless finite difference method, especially star selection criteria and a local weighted function approximation. The approach leads to the explicit stochastic formula relating one unknown function value with all a-priori known data parameters. Therefore, it allows for a fast and effective estimation of the solution value at the selected point(s), without the necessity of generation of large systems of equations, combining all unknown values. In such a manner, the proposed approach develops and extends the original standard Monte Carlo one toward analysis of boundary value problems with more complex shape geometry, natural boundary conditions, non-homogeneous right-hand sides as well as anisotropic and non-linear material models. The paper is illustrated with numerical results of selected elliptic problems, including a torsion problem of a prismatic bar, a stationary heat flow analysis with anisotropic and non-linear material functions, as well as an inverse heat problem. Moreover, the appropriate coupling with other deterministic methods (e.g., the finite element method) is considered.
期刊介绍:
Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on:
-mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities;
-methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems;
-dynamics of material systems;
-fluid flows and interactions with solids.
Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above.
The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc.
Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.