情感分析Halodoc应用中Naive Bayes算法、支持向量机和K近邻的实现

Elly Indrayuni, Acmad Nurhadi, Dinar Ajeng Kristiyanti
{"title":"情感分析Halodoc应用中Naive Bayes算法、支持向量机和K近邻的实现","authors":"Elly Indrayuni, Acmad Nurhadi, Dinar Ajeng Kristiyanti","doi":"10.30998/faktorexacta.v14i2.9697","DOIUrl":null,"url":null,"abstract":"Received May 1, 2021 Revised May 25, 2021 Accepted May 28, 2021 During the Covid-19 pandemic, many people access information and even consult health problems online with the best doctors via smartphones. The Halodoc application is considered the most popular with 18 million users in 2020. So that many people have reviewed the application on the Google Play Store application provider. It may take a while to read the full review. However, if only a few comments are read, they are biased. For that, a platform is needed which can automatically identify positive or negative opinions. Sentiment analysis is a solution for the technique of classifying texts or sentiments into positive or negative opinion categories. The method used in this research is an experiment using the Naive Bayes algorithm, Support Vector Machine, and K-Nearest Neighbors. Evaluation is carried out using 10 Fold Cross-Validation. The results showed that K-Nearest Neighbors (KNN) had the best and most accurate performance in the sentiment classification because it produced the highest accuracy value of 95.00% and the largest AUC value of 0.985 compared to the Naive Bayes and Support Vector Machine algorithm.","PeriodicalId":53004,"journal":{"name":"Faktor Exacta","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Implementasi Algoritma Naive Bayes, Support Vector Machine, dan K-Nearest Neighbors untuk Analisa Sentimen Aplikasi Halodoc\",\"authors\":\"Elly Indrayuni, Acmad Nurhadi, Dinar Ajeng Kristiyanti\",\"doi\":\"10.30998/faktorexacta.v14i2.9697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received May 1, 2021 Revised May 25, 2021 Accepted May 28, 2021 During the Covid-19 pandemic, many people access information and even consult health problems online with the best doctors via smartphones. The Halodoc application is considered the most popular with 18 million users in 2020. So that many people have reviewed the application on the Google Play Store application provider. It may take a while to read the full review. However, if only a few comments are read, they are biased. For that, a platform is needed which can automatically identify positive or negative opinions. Sentiment analysis is a solution for the technique of classifying texts or sentiments into positive or negative opinion categories. The method used in this research is an experiment using the Naive Bayes algorithm, Support Vector Machine, and K-Nearest Neighbors. Evaluation is carried out using 10 Fold Cross-Validation. The results showed that K-Nearest Neighbors (KNN) had the best and most accurate performance in the sentiment classification because it produced the highest accuracy value of 95.00% and the largest AUC value of 0.985 compared to the Naive Bayes and Support Vector Machine algorithm.\",\"PeriodicalId\":53004,\"journal\":{\"name\":\"Faktor Exacta\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faktor Exacta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30998/faktorexacta.v14i2.9697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faktor Exacta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30998/faktorexacta.v14i2.9697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

收到日期2021年5月1日修订日期2021年05月25日接受日期2021年08月28日在新冠肺炎大流行期间,许多人通过智能手机访问信息,甚至与最好的医生在线咨询健康问题。Halodoc应用程序被认为是2020年最受欢迎的应用程序,拥有1800万用户。因此,许多人已经在谷歌Play商店应用程序提供商上查看了该应用程序。阅读完整的评论可能需要一段时间。然而,如果只读了几条评论,它们就有偏见。为此,需要一个能够自动识别积极或消极意见的平台。情绪分析是一种将文本或情绪分为积极或消极观点类别的技术解决方案。本研究中使用的方法是使用Naive Bayes算法、支持向量机和K-最近邻进行的实验。使用10倍交叉验证进行评估。结果表明,与Naive Bayes和支持向量机算法相比,K-最近邻(KNN)在情感分类中具有最好和最准确的性能,因为它产生了95.00%的最高准确率值和0.985的最大AUC值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementasi Algoritma Naive Bayes, Support Vector Machine, dan K-Nearest Neighbors untuk Analisa Sentimen Aplikasi Halodoc
Received May 1, 2021 Revised May 25, 2021 Accepted May 28, 2021 During the Covid-19 pandemic, many people access information and even consult health problems online with the best doctors via smartphones. The Halodoc application is considered the most popular with 18 million users in 2020. So that many people have reviewed the application on the Google Play Store application provider. It may take a while to read the full review. However, if only a few comments are read, they are biased. For that, a platform is needed which can automatically identify positive or negative opinions. Sentiment analysis is a solution for the technique of classifying texts or sentiments into positive or negative opinion categories. The method used in this research is an experiment using the Naive Bayes algorithm, Support Vector Machine, and K-Nearest Neighbors. Evaluation is carried out using 10 Fold Cross-Validation. The results showed that K-Nearest Neighbors (KNN) had the best and most accurate performance in the sentiment classification because it produced the highest accuracy value of 95.00% and the largest AUC value of 0.985 compared to the Naive Bayes and Support Vector Machine algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Perancangan Diagnosa Covid-19 Menggunakan Metode Case Based Reasoning (CBR) Untuk Mengidentifikasi Tingkatan Gejala Pasien Covid-19 Analisis Model Matematika dan Simulasi Pada Penyebaran Hepatitis Non HepA-E Akut di Indonesia Perancangan Sistem Informasi Hino Service on Site (Studi Kasus : Dealer Hino, PT. Persada Lampung Raya) Penerapan Algoritma Sweep dan Particle Swarm Optimization (PSO) sebagai Alternatif Menentukan Rute Distribusi Penerapan Metode Convolution Neural Network (CNN) Dalam Proses Pengolahan Citra Untuk Mendeteksi Cacat Produksi Pada Produk Masker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1