{"title":"一种带有额外部分分布质量的旋转梁的新动力学模型","authors":"A. Altınkaynak, M. Gürgöze","doi":"10.24423/AOM.3498","DOIUrl":null,"url":null,"abstract":"In this paper, a new dynamic model for the vibration analysis of an inwardoriented rotating cantilever beam with extra distributed mass was presented. The derived differential equation of motion was solved using the meshless methods of generalizedMultiquadric Radial Basis Function (RBF) and the eigenfrequencies of the system were determined. The same problem was also modeled using the finite element method and the results were compared to validate the accuracy of the proposed model. Later, the effect of the partially distributed mass amount and location on the eigenfrequencies was studied for various beam lengths. The results showed that the eigenfrequency at a constant rotational speed mostly decreased unless the mass was located at the free end of the beam. The location of the mass had a greater effect on the first eigenfrequency compared to the second and third eigenfrequencies. A joint dimensionless eigenfrequency was found at a specific rotational speed regardless of the distributed mass. Nearly constant dimensionless eigenfrequencies could be obtained for a wide range of rotational speeds by adjusting the distributed mass.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":"72 1","pages":"307-321"},"PeriodicalIF":1.1000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new dynamic model for a rotating beam carrying extra partially distributed mass\",\"authors\":\"A. Altınkaynak, M. Gürgöze\",\"doi\":\"10.24423/AOM.3498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new dynamic model for the vibration analysis of an inwardoriented rotating cantilever beam with extra distributed mass was presented. The derived differential equation of motion was solved using the meshless methods of generalizedMultiquadric Radial Basis Function (RBF) and the eigenfrequencies of the system were determined. The same problem was also modeled using the finite element method and the results were compared to validate the accuracy of the proposed model. Later, the effect of the partially distributed mass amount and location on the eigenfrequencies was studied for various beam lengths. The results showed that the eigenfrequency at a constant rotational speed mostly decreased unless the mass was located at the free end of the beam. The location of the mass had a greater effect on the first eigenfrequency compared to the second and third eigenfrequencies. A joint dimensionless eigenfrequency was found at a specific rotational speed regardless of the distributed mass. Nearly constant dimensionless eigenfrequencies could be obtained for a wide range of rotational speeds by adjusting the distributed mass.\",\"PeriodicalId\":8280,\"journal\":{\"name\":\"Archives of Mechanics\",\"volume\":\"72 1\",\"pages\":\"307-321\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24423/AOM.3498\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.3498","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
A new dynamic model for a rotating beam carrying extra partially distributed mass
In this paper, a new dynamic model for the vibration analysis of an inwardoriented rotating cantilever beam with extra distributed mass was presented. The derived differential equation of motion was solved using the meshless methods of generalizedMultiquadric Radial Basis Function (RBF) and the eigenfrequencies of the system were determined. The same problem was also modeled using the finite element method and the results were compared to validate the accuracy of the proposed model. Later, the effect of the partially distributed mass amount and location on the eigenfrequencies was studied for various beam lengths. The results showed that the eigenfrequency at a constant rotational speed mostly decreased unless the mass was located at the free end of the beam. The location of the mass had a greater effect on the first eigenfrequency compared to the second and third eigenfrequencies. A joint dimensionless eigenfrequency was found at a specific rotational speed regardless of the distributed mass. Nearly constant dimensionless eigenfrequencies could be obtained for a wide range of rotational speeds by adjusting the distributed mass.
期刊介绍:
Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on:
-mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities;
-methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems;
-dynamics of material systems;
-fluid flows and interactions with solids.
Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above.
The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc.
Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.