Mijia Yang, Y. C. Wu, Y. H. Liu, J. Q. Chen, C. Wu, W. Feng, W. Cai, X. L. Wang
{"title":"CoCl2·6H2O促进NaBH4-NH3BH3复合材料水解释氢","authors":"Mijia Yang, Y. C. Wu, Y. H. Liu, J. Q. Chen, C. Wu, W. Feng, W. Cai, X. L. Wang","doi":"10.15251/djnb.2023.183.899","DOIUrl":null,"url":null,"abstract":"In recent years, the effective hydrogen release from hydrogen storage materials has attracted extensive attention. In this work, CoCl2·6H2O (Cobalt chloride hexahydrate, CCH), a low cost and easily available catalyst, was successfully used to catalyze the hydrolysis of NaBH4-NH3BH3 composite (xSB-AB, x is the molar ratio of SB to AB). The results show that the synergistic effect produced by ball milling is beneficial to improve the hydrogen release performance of xSB-AB hydrolysis. This work not only advances the understanding of the synergistic effect of SB and AB, but also provides a basis for using low-cost catalysts to improve the hydrolysis performance of xSB-AB","PeriodicalId":11233,"journal":{"name":"Digest Journal of Nanomaterials and Biostructures","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen release from hydrolysis of NaBH4-NH3BH3 composite promoted by CoCl2·6H2O\",\"authors\":\"Mijia Yang, Y. C. Wu, Y. H. Liu, J. Q. Chen, C. Wu, W. Feng, W. Cai, X. L. Wang\",\"doi\":\"10.15251/djnb.2023.183.899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the effective hydrogen release from hydrogen storage materials has attracted extensive attention. In this work, CoCl2·6H2O (Cobalt chloride hexahydrate, CCH), a low cost and easily available catalyst, was successfully used to catalyze the hydrolysis of NaBH4-NH3BH3 composite (xSB-AB, x is the molar ratio of SB to AB). The results show that the synergistic effect produced by ball milling is beneficial to improve the hydrogen release performance of xSB-AB hydrolysis. This work not only advances the understanding of the synergistic effect of SB and AB, but also provides a basis for using low-cost catalysts to improve the hydrolysis performance of xSB-AB\",\"PeriodicalId\":11233,\"journal\":{\"name\":\"Digest Journal of Nanomaterials and Biostructures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest Journal of Nanomaterials and Biostructures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/djnb.2023.183.899\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest Journal of Nanomaterials and Biostructures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/djnb.2023.183.899","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydrogen release from hydrolysis of NaBH4-NH3BH3 composite promoted by CoCl2·6H2O
In recent years, the effective hydrogen release from hydrogen storage materials has attracted extensive attention. In this work, CoCl2·6H2O (Cobalt chloride hexahydrate, CCH), a low cost and easily available catalyst, was successfully used to catalyze the hydrolysis of NaBH4-NH3BH3 composite (xSB-AB, x is the molar ratio of SB to AB). The results show that the synergistic effect produced by ball milling is beneficial to improve the hydrogen release performance of xSB-AB hydrolysis. This work not only advances the understanding of the synergistic effect of SB and AB, but also provides a basis for using low-cost catalysts to improve the hydrolysis performance of xSB-AB