肾囊肿检测的人工智能优化图像分割技术

Bhawna Dhruv, Neetu Mittal, Megha Modi
{"title":"肾囊肿检测的人工智能优化图像分割技术","authors":"Bhawna Dhruv, Neetu Mittal, Megha Modi","doi":"10.1080/03091902.2022.2080882","DOIUrl":null,"url":null,"abstract":"Abstract The vast number of image modalities available nowadays has given rise and access to a number of medical images. These images perhaps suffer issues such as low contrast, noise, ill-defined boundaries and poor visualisation. Therefore, a need for effective segmentation arises. Medical image segmentation plays a significant role in identifying a disorder, treatment planning, routine follow ups and computer-guided surgery respectively. The paper presents automatic medical image segmentation to overcome the imaging concerns and demarcate each notch & boundary in an image. The proposed algorithm identifies the existing kidney cyst precisely as they may be related to extreme disorders that may affect kidney function. The algorithm has been further tested on automatic segmentation using Genetic Algorithm, Ant Colony Optimisation and Fuzzy C Means Clustering. In terms of visualisation of valuable pathology, GA stands out and further helps in better assessment of the extent of the disease providing with better representation of the kidney cysts thereby giving a better diagnostic assurance and understanding of the nature of any disorder helping the medical practitioners as well as the patients. Experimental results on segmentation of kidney CT images conclusively demonstrate that the Genetic Algorithm is much more effective and robust.","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence optimized image segmentation techniques for renal cyst detection\",\"authors\":\"Bhawna Dhruv, Neetu Mittal, Megha Modi\",\"doi\":\"10.1080/03091902.2022.2080882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The vast number of image modalities available nowadays has given rise and access to a number of medical images. These images perhaps suffer issues such as low contrast, noise, ill-defined boundaries and poor visualisation. Therefore, a need for effective segmentation arises. Medical image segmentation plays a significant role in identifying a disorder, treatment planning, routine follow ups and computer-guided surgery respectively. The paper presents automatic medical image segmentation to overcome the imaging concerns and demarcate each notch & boundary in an image. The proposed algorithm identifies the existing kidney cyst precisely as they may be related to extreme disorders that may affect kidney function. The algorithm has been further tested on automatic segmentation using Genetic Algorithm, Ant Colony Optimisation and Fuzzy C Means Clustering. In terms of visualisation of valuable pathology, GA stands out and further helps in better assessment of the extent of the disease providing with better representation of the kidney cysts thereby giving a better diagnostic assurance and understanding of the nature of any disorder helping the medical practitioners as well as the patients. Experimental results on segmentation of kidney CT images conclusively demonstrate that the Genetic Algorithm is much more effective and robust.\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2022.2080882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2022.2080882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要当今可用的大量图像模式已经产生并获得了许多医学图像。这些图像可能存在对比度低、噪音大、边界不清和视觉效果差等问题。因此,出现了对有效分割的需求。医学图像分割分别在识别疾病、治疗计划、常规随访和计算机引导手术中发挥着重要作用。本文提出了一种自动医学图像分割方法,以克服成像问题,并标定图像中的每个缺口和边界。所提出的算法精确地识别现有的肾囊肿,因为它们可能与可能影响肾功能的极端疾病有关。利用遗传算法、蚁群优化算法和模糊C均值聚类算法对该算法进行了进一步的自动分割测试。在有价值的病理学可视化方面,GA脱颖而出,进一步有助于更好地评估疾病的程度,更好地表现肾囊肿,从而提供更好的诊断保证和对任何疾病性质的理解,帮助医生和患者。通过对肾脏CT图像的分割实验,验证了遗传算法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence optimized image segmentation techniques for renal cyst detection
Abstract The vast number of image modalities available nowadays has given rise and access to a number of medical images. These images perhaps suffer issues such as low contrast, noise, ill-defined boundaries and poor visualisation. Therefore, a need for effective segmentation arises. Medical image segmentation plays a significant role in identifying a disorder, treatment planning, routine follow ups and computer-guided surgery respectively. The paper presents automatic medical image segmentation to overcome the imaging concerns and demarcate each notch & boundary in an image. The proposed algorithm identifies the existing kidney cyst precisely as they may be related to extreme disorders that may affect kidney function. The algorithm has been further tested on automatic segmentation using Genetic Algorithm, Ant Colony Optimisation and Fuzzy C Means Clustering. In terms of visualisation of valuable pathology, GA stands out and further helps in better assessment of the extent of the disease providing with better representation of the kidney cysts thereby giving a better diagnostic assurance and understanding of the nature of any disorder helping the medical practitioners as well as the patients. Experimental results on segmentation of kidney CT images conclusively demonstrate that the Genetic Algorithm is much more effective and robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
期刊最新文献
News and product update. Safety, feasibility, and acceptability of a novel device to monitor ischaemic stroke patients. An enhanced Garter Snake Optimization-assisted deep learning model for lung cancer segmentation and classification using CT images. Transformative applications of additive manufacturing in biomedical engineering: bioprinting to surgical innovations. Characterisation of pulmonary air leak measurements using a mechanical ventilator in a bench setup.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1