分布鲁棒联合机会约束分配问题的一种求解方法

Shanshan Wang, Jinlin Li, Sanjay Mehrotra
{"title":"分布鲁棒联合机会约束分配问题的一种求解方法","authors":"Shanshan Wang, Jinlin Li, Sanjay Mehrotra","doi":"10.1287/ijoo.2021.0060","DOIUrl":null,"url":null,"abstract":"We study the assignment problem with chance constraints (CAP) and its distributionally robust counterpart DR-CAP. We present a technique for estimating big-M in such a formulation that takes advantage of the ambiguity set. We consider a 0-1 bilinear knapsack set to develop valid inequalities for CAP and DR-CAP. This is generalized to the joint chance constraint problem. A probability cut framework is also developed to solve DR-CAP. A computational study on problem instances obtained from using real hospital surgery data shows that the developed techniques allow us to solve certain model instances and reduce the computational time for others. The use of Wasserstein ambiguity set in the DR-CAP model improves the out-of-sample performance of satisfying the chance constraints more significantly than the one possible by increasing the sample size in the sample average approximation technique. The solution time for DR-CAP model instances is of the same order as that for solving the CAP instances. This finding is important because chance constrained optimization models are very difficult to solve when the coefficients in the constraints are random.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Solution Approach to Distributionally Robust Joint-Chance-Constrained Assignment Problems\",\"authors\":\"Shanshan Wang, Jinlin Li, Sanjay Mehrotra\",\"doi\":\"10.1287/ijoo.2021.0060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the assignment problem with chance constraints (CAP) and its distributionally robust counterpart DR-CAP. We present a technique for estimating big-M in such a formulation that takes advantage of the ambiguity set. We consider a 0-1 bilinear knapsack set to develop valid inequalities for CAP and DR-CAP. This is generalized to the joint chance constraint problem. A probability cut framework is also developed to solve DR-CAP. A computational study on problem instances obtained from using real hospital surgery data shows that the developed techniques allow us to solve certain model instances and reduce the computational time for others. The use of Wasserstein ambiguity set in the DR-CAP model improves the out-of-sample performance of satisfying the chance constraints more significantly than the one possible by increasing the sample size in the sample average approximation technique. The solution time for DR-CAP model instances is of the same order as that for solving the CAP instances. This finding is important because chance constrained optimization models are very difficult to solve when the coefficients in the constraints are random.\",\"PeriodicalId\":73382,\"journal\":{\"name\":\"INFORMS journal on optimization\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMS journal on optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/ijoo.2021.0060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2021.0060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们研究了具有机会约束的分配问题(CAP)及其分布鲁棒对应的DR-CAP。我们提出了一种在这样一个公式中估计big-M的技术,该公式利用了模糊集。我们考虑了一个0-1双线性背包集来发展CAP和DR-CAP的有效不等式。这被推广到联合机会约束问题。还开发了一个概率切割框架来解决DR-CAP问题。对使用真实医院手术数据获得的问题实例的计算研究表明,所开发的技术使我们能够解决某些模型实例,并减少其他模型实例的计算时间。在DR-CAP模型中使用Wasserstein模糊集比通过增加样本平均近似技术中的样本大小可能的方法更显著地提高了满足机会约束的样本外性能。DR-CAP模型实例的解决时间与CAP实例的解决顺序相同。这一发现很重要,因为当约束中的系数是随机的时,机会约束优化模型很难求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Solution Approach to Distributionally Robust Joint-Chance-Constrained Assignment Problems
We study the assignment problem with chance constraints (CAP) and its distributionally robust counterpart DR-CAP. We present a technique for estimating big-M in such a formulation that takes advantage of the ambiguity set. We consider a 0-1 bilinear knapsack set to develop valid inequalities for CAP and DR-CAP. This is generalized to the joint chance constraint problem. A probability cut framework is also developed to solve DR-CAP. A computational study on problem instances obtained from using real hospital surgery data shows that the developed techniques allow us to solve certain model instances and reduce the computational time for others. The use of Wasserstein ambiguity set in the DR-CAP model improves the out-of-sample performance of satisfying the chance constraints more significantly than the one possible by increasing the sample size in the sample average approximation technique. The solution time for DR-CAP model instances is of the same order as that for solving the CAP instances. This finding is important because chance constrained optimization models are very difficult to solve when the coefficients in the constraints are random.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty On the Hardness of Learning from Censored and Nonstationary Demand Temporal Bin Packing with Half-Capacity Jobs Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1