含PGPB的生物肥料提高土壤肥力和集约化番茄作物的生产力

IF 3.3 2区 农林科学 Q1 AGRONOMY Agronomy-Basel Pub Date : 2023-08-30 DOI:10.3390/agronomy13092286
Raúl Ortega Pérez, José Carlos Nieto García, Victor M. Gallegos-Cedillo, Miguel Ángel Domene Ruiz, Mila Santos Hernández, C. Nájera, Isabel Miralles Mellado, Fernando Diánez Martínez
{"title":"含PGPB的生物肥料提高土壤肥力和集约化番茄作物的生产力","authors":"Raúl Ortega Pérez, José Carlos Nieto García, Victor M. Gallegos-Cedillo, Miguel Ángel Domene Ruiz, Mila Santos Hernández, C. Nájera, Isabel Miralles Mellado, Fernando Diánez Martínez","doi":"10.3390/agronomy13092286","DOIUrl":null,"url":null,"abstract":"The use of microorganisms capable of promoting the growth and development of crops is generating interest at a global level as a sustainable technique in modern agriculture, especially in intensive farming systems, where the excessive use of synthetic fertilizers has led to environmental problems. The objective of this research was to evaluate the biofertilizing power of formulations enriched with plant growth-promoting bacteria (PGPB) (Azotobacter spp. to fix N and strains of Bacillus spp. to solubilize P and K not bioavailable for plants) to improve the fertility, quality, and productivity of a tomato crop and their potential use as an alternative to conventional fertilizers. Thus, NPK levels in soils, leaves, and fruits were evaluated; various parameters of fruit quality were measured; and an exhaustive analysis of the production and economic yields of the harvest was carried out. The results showed that the periodic supply of biofertilizers based on PGPB increased the harvest yield (20–32%) and favored the development of larger fruit sizes, which are economically more valuable, and the incomes increased even more than production (32–52%). The biofertilizers also demonstrated a positive effect on the solubilization of P and K in the soil, and the levels of P in leaves were also promoted. The capacity to mobilize the nutrients from soil to fruits was clearly favored when PGPB were inoculated periodically, and a reduction of up to 20% in synthetic fertilizers was accomplished (16, 34, and 23% increases for N, P, and K, respectively, against the treatment without PGPB and no fertigation reduction). Finally, the use of PGPB did not show appreciable differences regarding fruit quality parameters.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofertilizers Enriched with PGPB Improve Soil Fertility and the Productivity of an Intensive Tomato Crop\",\"authors\":\"Raúl Ortega Pérez, José Carlos Nieto García, Victor M. Gallegos-Cedillo, Miguel Ángel Domene Ruiz, Mila Santos Hernández, C. Nájera, Isabel Miralles Mellado, Fernando Diánez Martínez\",\"doi\":\"10.3390/agronomy13092286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of microorganisms capable of promoting the growth and development of crops is generating interest at a global level as a sustainable technique in modern agriculture, especially in intensive farming systems, where the excessive use of synthetic fertilizers has led to environmental problems. The objective of this research was to evaluate the biofertilizing power of formulations enriched with plant growth-promoting bacteria (PGPB) (Azotobacter spp. to fix N and strains of Bacillus spp. to solubilize P and K not bioavailable for plants) to improve the fertility, quality, and productivity of a tomato crop and their potential use as an alternative to conventional fertilizers. Thus, NPK levels in soils, leaves, and fruits were evaluated; various parameters of fruit quality were measured; and an exhaustive analysis of the production and economic yields of the harvest was carried out. The results showed that the periodic supply of biofertilizers based on PGPB increased the harvest yield (20–32%) and favored the development of larger fruit sizes, which are economically more valuable, and the incomes increased even more than production (32–52%). The biofertilizers also demonstrated a positive effect on the solubilization of P and K in the soil, and the levels of P in leaves were also promoted. The capacity to mobilize the nutrients from soil to fruits was clearly favored when PGPB were inoculated periodically, and a reduction of up to 20% in synthetic fertilizers was accomplished (16, 34, and 23% increases for N, P, and K, respectively, against the treatment without PGPB and no fertigation reduction). Finally, the use of PGPB did not show appreciable differences regarding fruit quality parameters.\",\"PeriodicalId\":56066,\"journal\":{\"name\":\"Agronomy-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/agronomy13092286\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agronomy13092286","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

使用能够促进作物生长和发育的微生物作为现代农业的一项可持续技术,在全球范围内引起了人们的兴趣,特别是在集约农业系统中,过度使用合成肥料导致了环境问题。本研究的目的是评估富含植物生长促进菌(PGPB)的制剂的生物肥化能力,以提高番茄作物的肥力、质量和生产力,以及它们作为传统肥料替代品的潜在用途。因此,对土壤、叶片和果实中的NPK水平进行了评估;测定了果实品质的各项参数;并对收获的生产和经济产量进行了详尽的分析。结果表明,基于PGPB的生物肥料的定期供应提高了收获产量(20-32%),有利于发展更大的果实尺寸,这在经济上更有价值,收入的增长甚至超过了产量(32-52%)。生物肥料对土壤中磷和钾的溶解也有积极作用,同时也促进了叶片中磷的水平。当定期接种PGPB时,将土壤中的营养物质转移到果实中的能力显然是有利的,并且合成肥料减少了高达20%(与不接种PGPB和不减少灌溉施肥的处理相比,N、P和K分别增加了16%、34%和23%)。最后,PGPB的使用在果实质量参数方面没有显示出明显的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biofertilizers Enriched with PGPB Improve Soil Fertility and the Productivity of an Intensive Tomato Crop
The use of microorganisms capable of promoting the growth and development of crops is generating interest at a global level as a sustainable technique in modern agriculture, especially in intensive farming systems, where the excessive use of synthetic fertilizers has led to environmental problems. The objective of this research was to evaluate the biofertilizing power of formulations enriched with plant growth-promoting bacteria (PGPB) (Azotobacter spp. to fix N and strains of Bacillus spp. to solubilize P and K not bioavailable for plants) to improve the fertility, quality, and productivity of a tomato crop and their potential use as an alternative to conventional fertilizers. Thus, NPK levels in soils, leaves, and fruits were evaluated; various parameters of fruit quality were measured; and an exhaustive analysis of the production and economic yields of the harvest was carried out. The results showed that the periodic supply of biofertilizers based on PGPB increased the harvest yield (20–32%) and favored the development of larger fruit sizes, which are economically more valuable, and the incomes increased even more than production (32–52%). The biofertilizers also demonstrated a positive effect on the solubilization of P and K in the soil, and the levels of P in leaves were also promoted. The capacity to mobilize the nutrients from soil to fruits was clearly favored when PGPB were inoculated periodically, and a reduction of up to 20% in synthetic fertilizers was accomplished (16, 34, and 23% increases for N, P, and K, respectively, against the treatment without PGPB and no fertigation reduction). Finally, the use of PGPB did not show appreciable differences regarding fruit quality parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agronomy-Basel
Agronomy-Basel Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
6.20
自引率
13.50%
发文量
2665
审稿时长
20.32 days
期刊介绍: Agronomy (ISSN 2073-4395) is an international and cross-disciplinary scholarly journal on agronomy and agroecology. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Straw Mulching Combined with Phosphorus Fertilizer Increases Fertile Florets of Wheat by Enhancing Leaf Photosynthesis and Assimilate Utilization Design and Parameter Optimization of a Negative-Pressure Peanut Fruit-Soil Separating Device Tomato Recognition and Localization Method Based on Improved YOLOv5n-seg Model and Binocular Stereo Vision Compost Tea as Organic Fertilizer and Plant Disease Control: Bibliometric Analysis Silver and Hematite Nanoparticles Had a Limited Effect on the Bacterial Community Structure in Soil Cultivated with Phaseolus vulgaris L.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1