群居黄蜂及其筑巢基质的群体化学特征

IF 1.6 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemoecology Pub Date : 2021-08-24 DOI:10.1007/s00049-021-00361-5
Denise Sguarizi-Antonio, Kamylla Balbuena Michelutti, Eva Ramona Pereira Soares, Nathan Rodrigues Batista, Sidnei Eduardo Lima-Junior, Claudia Andrea Lima Cardoso, Viviana de Oliveira Torres, William Fernando Antonialli-Junior
{"title":"群居黄蜂及其筑巢基质的群体化学特征","authors":"Denise Sguarizi-Antonio,&nbsp;Kamylla Balbuena Michelutti,&nbsp;Eva Ramona Pereira Soares,&nbsp;Nathan Rodrigues Batista,&nbsp;Sidnei Eduardo Lima-Junior,&nbsp;Claudia Andrea Lima Cardoso,&nbsp;Viviana de Oliveira Torres,&nbsp;William Fernando Antonialli-Junior","doi":"10.1007/s00049-021-00361-5","DOIUrl":null,"url":null,"abstract":"<div><p>Social wasps build their nests using plant material and can thereby occupy different types of habitats. The organization of their colonies is generally based on complex communication systems that include chemical compounds of the cuticle that are shared with the material of their nests thus contributing to the specific chemical signature of their colony. These compounds can vary by environmental factors, in this case the nesting substrate may interfere with this composition. However, no study to date has investigated whether there is any relationship between the chemical signature of the colony and the nesting substrate of their nests. Therefore, in this study we investigated the relationship between the colonial chemical signature and the plant in which the colonies were nesting. Colonies of three species of social wasps and samples of plants where they nested were collected, then extractions of the chemical composition of adult wasps, nest material and plants were performed. The results show that the colonies of social wasps investigated here share their chemical composition with the plants where their nests were built. Our results suggest that the plant can provide the colony with more than just a place with ideal physical conditions and safety, but also compounds that compose the colonial chemical signature.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 1","pages":"41 - 47"},"PeriodicalIF":1.6000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00049-021-00361-5","citationCount":"2","resultStr":"{\"title\":\"Colonial chemical signature of social wasps and their nesting substrates\",\"authors\":\"Denise Sguarizi-Antonio,&nbsp;Kamylla Balbuena Michelutti,&nbsp;Eva Ramona Pereira Soares,&nbsp;Nathan Rodrigues Batista,&nbsp;Sidnei Eduardo Lima-Junior,&nbsp;Claudia Andrea Lima Cardoso,&nbsp;Viviana de Oliveira Torres,&nbsp;William Fernando Antonialli-Junior\",\"doi\":\"10.1007/s00049-021-00361-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Social wasps build their nests using plant material and can thereby occupy different types of habitats. The organization of their colonies is generally based on complex communication systems that include chemical compounds of the cuticle that are shared with the material of their nests thus contributing to the specific chemical signature of their colony. These compounds can vary by environmental factors, in this case the nesting substrate may interfere with this composition. However, no study to date has investigated whether there is any relationship between the chemical signature of the colony and the nesting substrate of their nests. Therefore, in this study we investigated the relationship between the colonial chemical signature and the plant in which the colonies were nesting. Colonies of three species of social wasps and samples of plants where they nested were collected, then extractions of the chemical composition of adult wasps, nest material and plants were performed. The results show that the colonies of social wasps investigated here share their chemical composition with the plants where their nests were built. Our results suggest that the plant can provide the colony with more than just a place with ideal physical conditions and safety, but also compounds that compose the colonial chemical signature.</p></div>\",\"PeriodicalId\":515,\"journal\":{\"name\":\"Chemoecology\",\"volume\":\"32 1\",\"pages\":\"41 - 47\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00049-021-00361-5\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemoecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-021-00361-5\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-021-00361-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

群居黄蜂用植物材料筑巢,因此可以占据不同类型的栖息地。蜂群的组织通常基于复杂的通信系统,其中包括角质层的化学化合物,这些化合物与巢穴的材料共享,从而形成了蜂群的特定化学特征。这些化合物会因环境因素而变化,在这种情况下,嵌套基质可能会干扰这种成分。然而,迄今为止还没有研究调查过蚁群的化学特征与其巢穴的筑巢基质之间是否存在任何关系。因此,在本研究中,我们研究了蚁群化学特征与蚁群筑巢植物之间的关系。采集了三种社会黄蜂的群落和巢内植物样本,提取了成虫、巢材和植物的化学成分。结果表明,这里调查的群居黄蜂的殖民地与它们筑巢的植物具有相同的化学成分。我们的研究结果表明,这种植物不仅可以为蜂群提供一个理想的物理条件和安全的地方,而且还可以提供构成蜂群化学特征的化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Colonial chemical signature of social wasps and their nesting substrates

Social wasps build their nests using plant material and can thereby occupy different types of habitats. The organization of their colonies is generally based on complex communication systems that include chemical compounds of the cuticle that are shared with the material of their nests thus contributing to the specific chemical signature of their colony. These compounds can vary by environmental factors, in this case the nesting substrate may interfere with this composition. However, no study to date has investigated whether there is any relationship between the chemical signature of the colony and the nesting substrate of their nests. Therefore, in this study we investigated the relationship between the colonial chemical signature and the plant in which the colonies were nesting. Colonies of three species of social wasps and samples of plants where they nested were collected, then extractions of the chemical composition of adult wasps, nest material and plants were performed. The results show that the colonies of social wasps investigated here share their chemical composition with the plants where their nests were built. Our results suggest that the plant can provide the colony with more than just a place with ideal physical conditions and safety, but also compounds that compose the colonial chemical signature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemoecology
Chemoecology 环境科学-生化与分子生物学
CiteScore
4.20
自引率
0.00%
发文量
11
审稿时长
>36 weeks
期刊介绍: It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.
期刊最新文献
Pyrrolizidine alkaloids in tiger moths: trends and knowledge gaps Cuticular hydrocarbons as host recognition cues in specialist and generalist endoparasitoids How to chew gum: the post-ingestion fate of foliar secondary compounds consumed by a eucalypt herbivore Correction: The variability of iridomyrmecin, the venom of the Argentine ant, in its native and invasive ranges Exploring the venom of Ectatomma brunneum Smith (Hymenoptera: Formicidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1