克里斯蒂安·荣格-全球大气化学的先驱

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Journal of Atmospheric Chemistry Pub Date : 2022-08-24 DOI:10.1007/s10874-022-09437-0
Robert A. Duce, Russell R. Dickerson, Ian E. Galbally, James N. Galloway, Ruprecht Jaenicke, William C. Keene, Jos Lelieveld, Hiram Levy II, Joseph M. Prospero, Lothar Schütz, Franz Slemr, Peter Winkler
{"title":"克里斯蒂安·荣格-全球大气化学的先驱","authors":"Robert A. Duce,&nbsp;Russell R. Dickerson,&nbsp;Ian E. Galbally,&nbsp;James N. Galloway,&nbsp;Ruprecht Jaenicke,&nbsp;William C. Keene,&nbsp;Jos Lelieveld,&nbsp;Hiram Levy II,&nbsp;Joseph M. Prospero,&nbsp;Lothar Schütz,&nbsp;Franz Slemr,&nbsp;Peter Winkler","doi":"10.1007/s10874-022-09437-0","DOIUrl":null,"url":null,"abstract":"<div><p>Christian Junge (1912–1996) is considered by many to be the founder of the modern discipline of atmospheric chemistry. In studies from the 1950s through the 1970s, Junge was able to link chemical measurements in a few scattered locations around the earth and integrate them with meteorology to develop the first global view of the basic chemical and physical processes that control the sources, transport, transformations, and fate of particles and gases in the atmosphere. In this paper we summarize and comment upon a number of Junge’s seminal research contributions to atmospheric chemistry, including his discovery of the stratospheric sulfate layer (known as the Junge layer), his recognition of the relationship between the variability of the concentrations of trace gases and their atmospheric lifetimes, his studies of aerosol size and number distributions, his development of the first quantitative model of tropospheric ozone, and other significant scientific investigations. We also discuss Junge’s professional life, his many international leadership positions and honors, as well as some memories and reflections on his many abilities that led to his outstanding contributions to the science of atmospheric chemistry.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"79 4","pages":"219 - 256"},"PeriodicalIF":3.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10874-022-09437-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Christian Junge – a pioneer in global atmospheric chemistry\",\"authors\":\"Robert A. Duce,&nbsp;Russell R. Dickerson,&nbsp;Ian E. Galbally,&nbsp;James N. Galloway,&nbsp;Ruprecht Jaenicke,&nbsp;William C. Keene,&nbsp;Jos Lelieveld,&nbsp;Hiram Levy II,&nbsp;Joseph M. Prospero,&nbsp;Lothar Schütz,&nbsp;Franz Slemr,&nbsp;Peter Winkler\",\"doi\":\"10.1007/s10874-022-09437-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Christian Junge (1912–1996) is considered by many to be the founder of the modern discipline of atmospheric chemistry. In studies from the 1950s through the 1970s, Junge was able to link chemical measurements in a few scattered locations around the earth and integrate them with meteorology to develop the first global view of the basic chemical and physical processes that control the sources, transport, transformations, and fate of particles and gases in the atmosphere. In this paper we summarize and comment upon a number of Junge’s seminal research contributions to atmospheric chemistry, including his discovery of the stratospheric sulfate layer (known as the Junge layer), his recognition of the relationship between the variability of the concentrations of trace gases and their atmospheric lifetimes, his studies of aerosol size and number distributions, his development of the first quantitative model of tropospheric ozone, and other significant scientific investigations. We also discuss Junge’s professional life, his many international leadership positions and honors, as well as some memories and reflections on his many abilities that led to his outstanding contributions to the science of atmospheric chemistry.</p></div>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"79 4\",\"pages\":\"219 - 256\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10874-022-09437-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-022-09437-0\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-022-09437-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

克里斯蒂安·荣格(1912-1996)被许多人认为是现代大气化学学科的奠基人。在20世纪50年代到70年代的研究中,Junge能够将地球上一些分散地点的化学测量联系起来,并将它们与气象学相结合,从而形成了第一个关于控制大气中颗粒和气体的来源、运输、转化和命运的基本化学和物理过程的全球视角。在本文中,我们总结和评论了荣格对大气化学的一些开创性研究贡献,包括他对平流层硫酸盐层(称为荣格层)的发现,他对微量气体浓度变异性与其大气寿命之间关系的认识,他对气溶胶大小和数量分布的研究,他建立了对流层臭氧的第一个定量模型,以及其他重要的科学研究。我们还讨论了Junge的职业生涯,他的许多国际领导职位和荣誉,以及他的许多能力导致他对大气化学科学做出杰出贡献的一些回忆和思考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Christian Junge – a pioneer in global atmospheric chemistry

Christian Junge (1912–1996) is considered by many to be the founder of the modern discipline of atmospheric chemistry. In studies from the 1950s through the 1970s, Junge was able to link chemical measurements in a few scattered locations around the earth and integrate them with meteorology to develop the first global view of the basic chemical and physical processes that control the sources, transport, transformations, and fate of particles and gases in the atmosphere. In this paper we summarize and comment upon a number of Junge’s seminal research contributions to atmospheric chemistry, including his discovery of the stratospheric sulfate layer (known as the Junge layer), his recognition of the relationship between the variability of the concentrations of trace gases and their atmospheric lifetimes, his studies of aerosol size and number distributions, his development of the first quantitative model of tropospheric ozone, and other significant scientific investigations. We also discuss Junge’s professional life, his many international leadership positions and honors, as well as some memories and reflections on his many abilities that led to his outstanding contributions to the science of atmospheric chemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
期刊最新文献
Association between time of day and carbonaceous PM2.5 and oxidative potential in summer and winter in the Suncheon industrial area, Republic of Korea PM2.5 and PM10-related carcinogenic and non-carcinogenic risk assessment in Iran Characteristics of surface air quality over provincial capital cities in Northwestern China during 2013–2020 Stable isotopic, bulk, and molecular compositions of post-monsoon biomass-burning aerosols in Delhi suggest photochemical ageing during regional transport is more pronounced than local processing A review on sequential extraction of metals bound particulate matter and their health risk assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1