{"title":"海洋纳米绿藻(Eustigmatophyceae)突变体对孟加拉玫瑰的抗性表现出对氧的高耐受性","authors":"C. Faraloni, G. Torzillo, A. Vonshak","doi":"10.1080/09670262.2022.2087907","DOIUrl":null,"url":null,"abstract":"ABSTRACT The genus Nannochloropsis (Eustigmatophyceae), including N. oceanica, has attracted considerable interest, due to its ability to accumulate high levels of lipids. Under large-scale cultivation outdoors, cells are exposed to a combination of high oxygen and light irradiance conditions that may promote photoinhibition, so selecting strains able to tolerate oxidative stress is desirable. Rose bengal (RB) reacts with oxygen to form singlet oxygen in the presence of light. Therefore, RB can be a very useful tool for testing the sensitivity of algae to oxidative stress and thus identify strains capable of photosynthesis under oxidative stress. In this study, two mutants of N. oceanica, RB2 and RB113, which are resistant to high concentrations of rose bengal, were phenotypically characterized for their sensitivity to high oxygen concentrations. Both strains exhibited levels of catalase and ascorbate peroxidase 1.5- and 3-fold higher, respectively, than the wild type. In addition, the synthesis of carotenoids was lower than in the wild type, indicating lower oxidative stress. These results were confirmed by chlorophyll fluorescence measurements, which indicated a lower sensitivity of the photosynthetic apparatus of the mutants, especially of RB2, even in the presence of H2O2. The results support the hypothesis that resistance to rose bengal may also induce resistance to high dissolved oxygen stress. The ability shown by the mutants to perform photosynthesis more efficiently under high oxygen stress than the wild type makes them promising candidates for outdoor cultures.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nannochloropsis oceanica (Eustigmatophyceae) mutants resistant to rose bengal demonstrate high tolerance to oxygen\",\"authors\":\"C. Faraloni, G. Torzillo, A. Vonshak\",\"doi\":\"10.1080/09670262.2022.2087907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The genus Nannochloropsis (Eustigmatophyceae), including N. oceanica, has attracted considerable interest, due to its ability to accumulate high levels of lipids. Under large-scale cultivation outdoors, cells are exposed to a combination of high oxygen and light irradiance conditions that may promote photoinhibition, so selecting strains able to tolerate oxidative stress is desirable. Rose bengal (RB) reacts with oxygen to form singlet oxygen in the presence of light. Therefore, RB can be a very useful tool for testing the sensitivity of algae to oxidative stress and thus identify strains capable of photosynthesis under oxidative stress. In this study, two mutants of N. oceanica, RB2 and RB113, which are resistant to high concentrations of rose bengal, were phenotypically characterized for their sensitivity to high oxygen concentrations. Both strains exhibited levels of catalase and ascorbate peroxidase 1.5- and 3-fold higher, respectively, than the wild type. In addition, the synthesis of carotenoids was lower than in the wild type, indicating lower oxidative stress. These results were confirmed by chlorophyll fluorescence measurements, which indicated a lower sensitivity of the photosynthetic apparatus of the mutants, especially of RB2, even in the presence of H2O2. The results support the hypothesis that resistance to rose bengal may also induce resistance to high dissolved oxygen stress. The ability shown by the mutants to perform photosynthesis more efficiently under high oxygen stress than the wild type makes them promising candidates for outdoor cultures.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/09670262.2022.2087907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/09670262.2022.2087907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Nannochloropsis oceanica (Eustigmatophyceae) mutants resistant to rose bengal demonstrate high tolerance to oxygen
ABSTRACT The genus Nannochloropsis (Eustigmatophyceae), including N. oceanica, has attracted considerable interest, due to its ability to accumulate high levels of lipids. Under large-scale cultivation outdoors, cells are exposed to a combination of high oxygen and light irradiance conditions that may promote photoinhibition, so selecting strains able to tolerate oxidative stress is desirable. Rose bengal (RB) reacts with oxygen to form singlet oxygen in the presence of light. Therefore, RB can be a very useful tool for testing the sensitivity of algae to oxidative stress and thus identify strains capable of photosynthesis under oxidative stress. In this study, two mutants of N. oceanica, RB2 and RB113, which are resistant to high concentrations of rose bengal, were phenotypically characterized for their sensitivity to high oxygen concentrations. Both strains exhibited levels of catalase and ascorbate peroxidase 1.5- and 3-fold higher, respectively, than the wild type. In addition, the synthesis of carotenoids was lower than in the wild type, indicating lower oxidative stress. These results were confirmed by chlorophyll fluorescence measurements, which indicated a lower sensitivity of the photosynthetic apparatus of the mutants, especially of RB2, even in the presence of H2O2. The results support the hypothesis that resistance to rose bengal may also induce resistance to high dissolved oxygen stress. The ability shown by the mutants to perform photosynthesis more efficiently under high oxygen stress than the wild type makes them promising candidates for outdoor cultures.