反向压力测试:宏观审慎压力测试的情景设计

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE Mathematical Finance Pub Date : 2023-02-06 DOI:10.1111/mafi.12373
Michel Baes, Eric Schaanning
{"title":"反向压力测试:宏观审慎压力测试的情景设计","authors":"Michel Baes,&nbsp;Eric Schaanning","doi":"10.1111/mafi.12373","DOIUrl":null,"url":null,"abstract":"<p>We propose a systematic algorithmic reverse-stress testing methodology to create “worst case” scenarios for regulatory stress tests by accounting for losses that arise from distressed portfolio liquidations. First, we derive the optimal bank response for any given shock. Then, we introduce an algorithm which systematically generates scenarios that exploit the key vulnerabilities in banks' portfolio holdings and thus maximize contagion despite banks' optimal response to the shock. We apply our methodology to data of the 2016 European Banking Authority (EBA) stress test, and design worst case scenarios for the portfolio holdings of European banks at the time. Using spectral clustering techniques, we group 10,000 worst-case scenarios into twelve geographically concentrated families. Our results show that even though there is a wide range of different scenarios within these 12 families, each cluster tends to affect the same banks. An “Anna Karenina” principle of stress testing emerges: <i>Not all stressful scenarios are alike, but every stressful scenario stresses the same banks</i>. These findings suggest that the precise specification of a scenario is not of primal importance as long as the most vulnerable banks are targeted and sufficiently stressed. Finally, our methodology can be used to uncover the weakest links in the financial system and thereby focus supervisory attention on these, thus building a bridge between macroprudential and microprudential stress tests.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12373","citationCount":"5","resultStr":"{\"title\":\"Reverse stress testing: Scenario design for macroprudential stress tests\",\"authors\":\"Michel Baes,&nbsp;Eric Schaanning\",\"doi\":\"10.1111/mafi.12373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a systematic algorithmic reverse-stress testing methodology to create “worst case” scenarios for regulatory stress tests by accounting for losses that arise from distressed portfolio liquidations. First, we derive the optimal bank response for any given shock. Then, we introduce an algorithm which systematically generates scenarios that exploit the key vulnerabilities in banks' portfolio holdings and thus maximize contagion despite banks' optimal response to the shock. We apply our methodology to data of the 2016 European Banking Authority (EBA) stress test, and design worst case scenarios for the portfolio holdings of European banks at the time. Using spectral clustering techniques, we group 10,000 worst-case scenarios into twelve geographically concentrated families. Our results show that even though there is a wide range of different scenarios within these 12 families, each cluster tends to affect the same banks. An “Anna Karenina” principle of stress testing emerges: <i>Not all stressful scenarios are alike, but every stressful scenario stresses the same banks</i>. These findings suggest that the precise specification of a scenario is not of primal importance as long as the most vulnerable banks are targeted and sufficiently stressed. Finally, our methodology can be used to uncover the weakest links in the financial system and thereby focus supervisory attention on these, thus building a bridge between macroprudential and microprudential stress tests.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12373\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12373\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12373","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种系统的算法反向压力测试方法,通过考虑不良投资组合清算产生的损失,为监管压力测试创建“最坏情况”场景。首先,我们推导出任何给定冲击的最优银行反应。然后,我们引入了一种算法,该算法系统地生成场景,利用银行投资组合持有的关键漏洞,从而在银行对冲击做出最佳反应的情况下最大限度地扩大传染。我们将我们的方法应用于2016年欧洲银行管理局(EBA)压力测试的数据,并为当时欧洲银行的投资组合持股设计最坏情况。使用光谱聚类技术,我们将10000个最坏情况场景分组为12个地理集中的家庭。我们的研究结果表明,尽管这12个家族中存在各种不同的情况,但每个集群往往会影响同一家银行。压力测试的一个“安娜·卡列尼娜”原则出现了:并非所有的压力场景都是一样的,但每个压力场景都会给同一家银行带来压力。这些发现表明,只要最脆弱的银行成为目标并受到足够的压力,场景的精确描述就不是最重要的。最后,我们的方法可用于揭示金融系统中最薄弱的环节,从而将监管注意力集中在这些环节上,从而在宏观审慎和微观审慎压力测试之间架起桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reverse stress testing: Scenario design for macroprudential stress tests

We propose a systematic algorithmic reverse-stress testing methodology to create “worst case” scenarios for regulatory stress tests by accounting for losses that arise from distressed portfolio liquidations. First, we derive the optimal bank response for any given shock. Then, we introduce an algorithm which systematically generates scenarios that exploit the key vulnerabilities in banks' portfolio holdings and thus maximize contagion despite banks' optimal response to the shock. We apply our methodology to data of the 2016 European Banking Authority (EBA) stress test, and design worst case scenarios for the portfolio holdings of European banks at the time. Using spectral clustering techniques, we group 10,000 worst-case scenarios into twelve geographically concentrated families. Our results show that even though there is a wide range of different scenarios within these 12 families, each cluster tends to affect the same banks. An “Anna Karenina” principle of stress testing emerges: Not all stressful scenarios are alike, but every stressful scenario stresses the same banks. These findings suggest that the precise specification of a scenario is not of primal importance as long as the most vulnerable banks are targeted and sufficiently stressed. Finally, our methodology can be used to uncover the weakest links in the financial system and thereby focus supervisory attention on these, thus building a bridge between macroprudential and microprudential stress tests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
期刊最新文献
Issue Information Designing stablecoins Systemic risk in markets with multiple central counterparties Joint calibration to SPX and VIX options with signature‐based models Dynamic equilibrium with insider information and general uninformed agent utility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1