{"title":"《国际造船进展》海上氢能专刊社论","authors":"K. Visser, F. Baldi, L. V. Biert","doi":"10.3233/isp-209002","DOIUrl":null,"url":null,"abstract":"As we write this editorial, the coronavirus has been declared a pandemic by the World Health Organization, and it is spreading at dramatic speed in parts of the world. It would be difficult not to relate the current situation to the climate emergency that we are also facing in this same moment. While the time scales are different, the basics of the phenomenon are similar: experts are repeating that it is a major threat, and that once it has started, it will be difficult, if not impossible, to stop it before it dramatically impacts our lives. As current effects are small and the costs of acting are high, most world leaders are stalling, waiting for others to make the move. However, studies have shown that the costs of acting now is far less than the costs required for climate adaption in the long run. The shipping industry makes no exception. Developments are not unseen, but slow, and mostly incremental. While there has been some efforts in reducing speed and moving towards cleaner fuels (mostly liquefied natural gas), these changes are still only applied in few cases, and will not be sufficient to shift the tide. Doing so would require the use of more innovative, disruptive solutions. Hydrogen is commonly referred to as a future renewable energy carrier as well as chemical building block for a sustainable society. Although produced primary from fossil sources today, its potential lies in its generation using water and renewable electricity. It can be used to fuel conventional propulsion systems based on internal combustion engines, but most importantly newer technologies like fuel cells. This ensures continuity with the past and the potential to enable synergic effects with new, more efficient ways of converting energy on board ships. From a maritime perspective, and besides the superior fuel cell performance in terms of higher efficiencies and zero hazardous and greenhouse emissions, fuel cells are expected to enhance the holistic ship performance with low noise emissions, graceful performance degradation, reduced maintenance and the absence of a zero point of failure. While hydrogen can hardly be described as the unchallenged solution for the future of shipping, there are definitely signs of rising interest, both from the scientific community, and from the industry. Notable projects include:","PeriodicalId":45800,"journal":{"name":"International Shipbuilding Progress","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/isp-209002","citationCount":"1","resultStr":"{\"title\":\"Editorial of special issue of “International shipbuilding Progress” on Maritime Hydrogen\",\"authors\":\"K. Visser, F. Baldi, L. V. Biert\",\"doi\":\"10.3233/isp-209002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As we write this editorial, the coronavirus has been declared a pandemic by the World Health Organization, and it is spreading at dramatic speed in parts of the world. It would be difficult not to relate the current situation to the climate emergency that we are also facing in this same moment. While the time scales are different, the basics of the phenomenon are similar: experts are repeating that it is a major threat, and that once it has started, it will be difficult, if not impossible, to stop it before it dramatically impacts our lives. As current effects are small and the costs of acting are high, most world leaders are stalling, waiting for others to make the move. However, studies have shown that the costs of acting now is far less than the costs required for climate adaption in the long run. The shipping industry makes no exception. Developments are not unseen, but slow, and mostly incremental. While there has been some efforts in reducing speed and moving towards cleaner fuels (mostly liquefied natural gas), these changes are still only applied in few cases, and will not be sufficient to shift the tide. Doing so would require the use of more innovative, disruptive solutions. Hydrogen is commonly referred to as a future renewable energy carrier as well as chemical building block for a sustainable society. Although produced primary from fossil sources today, its potential lies in its generation using water and renewable electricity. It can be used to fuel conventional propulsion systems based on internal combustion engines, but most importantly newer technologies like fuel cells. This ensures continuity with the past and the potential to enable synergic effects with new, more efficient ways of converting energy on board ships. From a maritime perspective, and besides the superior fuel cell performance in terms of higher efficiencies and zero hazardous and greenhouse emissions, fuel cells are expected to enhance the holistic ship performance with low noise emissions, graceful performance degradation, reduced maintenance and the absence of a zero point of failure. While hydrogen can hardly be described as the unchallenged solution for the future of shipping, there are definitely signs of rising interest, both from the scientific community, and from the industry. Notable projects include:\",\"PeriodicalId\":45800,\"journal\":{\"name\":\"International Shipbuilding Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/isp-209002\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Shipbuilding Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/isp-209002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Shipbuilding Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/isp-209002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Editorial of special issue of “International shipbuilding Progress” on Maritime Hydrogen
As we write this editorial, the coronavirus has been declared a pandemic by the World Health Organization, and it is spreading at dramatic speed in parts of the world. It would be difficult not to relate the current situation to the climate emergency that we are also facing in this same moment. While the time scales are different, the basics of the phenomenon are similar: experts are repeating that it is a major threat, and that once it has started, it will be difficult, if not impossible, to stop it before it dramatically impacts our lives. As current effects are small and the costs of acting are high, most world leaders are stalling, waiting for others to make the move. However, studies have shown that the costs of acting now is far less than the costs required for climate adaption in the long run. The shipping industry makes no exception. Developments are not unseen, but slow, and mostly incremental. While there has been some efforts in reducing speed and moving towards cleaner fuels (mostly liquefied natural gas), these changes are still only applied in few cases, and will not be sufficient to shift the tide. Doing so would require the use of more innovative, disruptive solutions. Hydrogen is commonly referred to as a future renewable energy carrier as well as chemical building block for a sustainable society. Although produced primary from fossil sources today, its potential lies in its generation using water and renewable electricity. It can be used to fuel conventional propulsion systems based on internal combustion engines, but most importantly newer technologies like fuel cells. This ensures continuity with the past and the potential to enable synergic effects with new, more efficient ways of converting energy on board ships. From a maritime perspective, and besides the superior fuel cell performance in terms of higher efficiencies and zero hazardous and greenhouse emissions, fuel cells are expected to enhance the holistic ship performance with low noise emissions, graceful performance degradation, reduced maintenance and the absence of a zero point of failure. While hydrogen can hardly be described as the unchallenged solution for the future of shipping, there are definitely signs of rising interest, both from the scientific community, and from the industry. Notable projects include:
期刊介绍:
The journal International Shipbuilding Progress was founded in 1954. Each year four issues appear (in April, July, September and December). Publications submitted to ISP should describe scientific work of high international standards, advancing subjects related to the field of Marine Technology, such as: conceptual design structural design hydromechanics and dynamics maritime engineering production of all types of ships production of all other objects intended for marine use shipping science and all directly related subjects offshore engineering in relation to the marine environment ocean engineering subjects in relation to the marine environment