{"title":"有或没有缺失的当前状态审查的尖锐极小最大值分布估计","authors":"S. Efromovich","doi":"10.1214/20-AOS1970","DOIUrl":null,"url":null,"abstract":"Nonparametric estimation of the cumulative distribution function and the probability density of a lifetime X modified by a current status censoring (CSC), including cases of right and left missing data, is a classical ill-posed problem with biased data. The biased nature of CSC data may preclude us from consistent estimation unless the biasing function is known or may be estimated, and its ill-posed nature slows down rates of convergence. Under a traditionally studied CSC, we observe a sample from $(Z,\\Delta )$ where a continuous monitoring time $Z$ is independent of $X$, $\\Delta :=I(X\\leq Z)$ is the status, and the bias of observations is created by the density of $Z$ which is estimable. In presence of right or left missing, we observe corresponding samples from $(\\Delta Z,\\Delta )$ or $((1-\\Delta )Z,\\Delta )$; the data are again biased but now the density of $Z$ cannot be estimated from the data. As a result, to solve the estimation problem, either the density of $Z$ must be known (like in a controlled study) or an extra cross-sectional sampling of $Z$, which is typically simpler than an underlying CSC study, be conducted. The main aim of the paper is to develop for this biased and ill-posed problem the theory of efficient (sharp-minimax) estimation which is inspired by known results for the case of directly observed $X$. Among interesting aspects of the developed theory: (i) While sharp-minimax analysis of missing CSC may follow the classical Pinsker’s methodology, analysis of CSC requires a more complicated estimation procedure based on a special smoothing in both frequency and time domains; (ii) Efficient estimation requires solving an old-standing problem of approximating aperiodic Sobolev functions; (iii) If smoothness of the cdf of $X$ is known, then its rate-minimax estimation is possible even if the density of $Z$ is rougher. Real and simulated examples, as well as extensions of the core models to dependent $X$ and Z and case-control CSC, are presented.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"49 1","pages":"568-589"},"PeriodicalIF":3.2000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sharp minimax distribution estimation for current status censoring with or without missing\",\"authors\":\"S. Efromovich\",\"doi\":\"10.1214/20-AOS1970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonparametric estimation of the cumulative distribution function and the probability density of a lifetime X modified by a current status censoring (CSC), including cases of right and left missing data, is a classical ill-posed problem with biased data. The biased nature of CSC data may preclude us from consistent estimation unless the biasing function is known or may be estimated, and its ill-posed nature slows down rates of convergence. Under a traditionally studied CSC, we observe a sample from $(Z,\\\\Delta )$ where a continuous monitoring time $Z$ is independent of $X$, $\\\\Delta :=I(X\\\\leq Z)$ is the status, and the bias of observations is created by the density of $Z$ which is estimable. In presence of right or left missing, we observe corresponding samples from $(\\\\Delta Z,\\\\Delta )$ or $((1-\\\\Delta )Z,\\\\Delta )$; the data are again biased but now the density of $Z$ cannot be estimated from the data. As a result, to solve the estimation problem, either the density of $Z$ must be known (like in a controlled study) or an extra cross-sectional sampling of $Z$, which is typically simpler than an underlying CSC study, be conducted. The main aim of the paper is to develop for this biased and ill-posed problem the theory of efficient (sharp-minimax) estimation which is inspired by known results for the case of directly observed $X$. Among interesting aspects of the developed theory: (i) While sharp-minimax analysis of missing CSC may follow the classical Pinsker’s methodology, analysis of CSC requires a more complicated estimation procedure based on a special smoothing in both frequency and time domains; (ii) Efficient estimation requires solving an old-standing problem of approximating aperiodic Sobolev functions; (iii) If smoothness of the cdf of $X$ is known, then its rate-minimax estimation is possible even if the density of $Z$ is rougher. Real and simulated examples, as well as extensions of the core models to dependent $X$ and Z and case-control CSC, are presented.\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":\"49 1\",\"pages\":\"568-589\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/20-AOS1970\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-AOS1970","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Sharp minimax distribution estimation for current status censoring with or without missing
Nonparametric estimation of the cumulative distribution function and the probability density of a lifetime X modified by a current status censoring (CSC), including cases of right and left missing data, is a classical ill-posed problem with biased data. The biased nature of CSC data may preclude us from consistent estimation unless the biasing function is known or may be estimated, and its ill-posed nature slows down rates of convergence. Under a traditionally studied CSC, we observe a sample from $(Z,\Delta )$ where a continuous monitoring time $Z$ is independent of $X$, $\Delta :=I(X\leq Z)$ is the status, and the bias of observations is created by the density of $Z$ which is estimable. In presence of right or left missing, we observe corresponding samples from $(\Delta Z,\Delta )$ or $((1-\Delta )Z,\Delta )$; the data are again biased but now the density of $Z$ cannot be estimated from the data. As a result, to solve the estimation problem, either the density of $Z$ must be known (like in a controlled study) or an extra cross-sectional sampling of $Z$, which is typically simpler than an underlying CSC study, be conducted. The main aim of the paper is to develop for this biased and ill-posed problem the theory of efficient (sharp-minimax) estimation which is inspired by known results for the case of directly observed $X$. Among interesting aspects of the developed theory: (i) While sharp-minimax analysis of missing CSC may follow the classical Pinsker’s methodology, analysis of CSC requires a more complicated estimation procedure based on a special smoothing in both frequency and time domains; (ii) Efficient estimation requires solving an old-standing problem of approximating aperiodic Sobolev functions; (iii) If smoothness of the cdf of $X$ is known, then its rate-minimax estimation is possible even if the density of $Z$ is rougher. Real and simulated examples, as well as extensions of the core models to dependent $X$ and Z and case-control CSC, are presented.
期刊介绍:
The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.