包容体的溶解:来自可解释机器学习方法的见解

IF 2.5 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Frontiers in chemical engineering Pub Date : 2023-08-07 DOI:10.3389/fceng.2023.1227620
C. Walther, Michael C. Martinetz, Anja Friedrich, Anne Tscheliessnig, M. Voigtmann, Alexander Jung, C. Brocard, E. Bluhmki, J. Smiatek
{"title":"包容体的溶解:来自可解释机器学习方法的见解","authors":"C. Walther, Michael C. Martinetz, Anja Friedrich, Anne Tscheliessnig, M. Voigtmann, Alexander Jung, C. Brocard, E. Bluhmki, J. Smiatek","doi":"10.3389/fceng.2023.1227620","DOIUrl":null,"url":null,"abstract":"We present explainable machine learning approaches for gaining deeper insights into the solubilization processes of inclusion bodies. The machine learning model with the highest prediction accuracy for the protein yield is further evaluated with regard to Shapley additive explanation (SHAP) values in terms of feature importance studies. Our results highlight an inverse fractional relationship between the protein yield and total protein concentration. Further correlations can also be observed for the dominant influences of the urea concentration and the underlying pH values. All findings are used to develop an analytical expression that is in reasonable agreement with experimental data. The resulting master curve highlights the benefits of explainable machine learning approaches for the detailed understanding of certain biopharmaceutical manufacturing steps.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solubilization of inclusion bodies: insights from explainable machine learning approaches\",\"authors\":\"C. Walther, Michael C. Martinetz, Anja Friedrich, Anne Tscheliessnig, M. Voigtmann, Alexander Jung, C. Brocard, E. Bluhmki, J. Smiatek\",\"doi\":\"10.3389/fceng.2023.1227620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present explainable machine learning approaches for gaining deeper insights into the solubilization processes of inclusion bodies. The machine learning model with the highest prediction accuracy for the protein yield is further evaluated with regard to Shapley additive explanation (SHAP) values in terms of feature importance studies. Our results highlight an inverse fractional relationship between the protein yield and total protein concentration. Further correlations can also be observed for the dominant influences of the urea concentration and the underlying pH values. All findings are used to develop an analytical expression that is in reasonable agreement with experimental data. The resulting master curve highlights the benefits of explainable machine learning approaches for the detailed understanding of certain biopharmaceutical manufacturing steps.\",\"PeriodicalId\":73073,\"journal\":{\"name\":\"Frontiers in chemical engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in chemical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fceng.2023.1227620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in chemical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fceng.2023.1227620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了可解释的机器学习方法,以更深入地了解包涵体的溶解过程。在特征重要性研究方面,关于Shapley加性解释(SHAP)值,进一步评估对蛋白质产量具有最高预测精度的机器学习模型。我们的结果强调了蛋白质产量和总蛋白质浓度之间的反比分数关系。尿素浓度和潜在pH值的主要影响也可以观察到进一步的相关性。所有发现都用于开发一个与实验数据合理一致的分析表达式。由此产生的主曲线突出了可解释的机器学习方法对详细理解某些生物制药制造步骤的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solubilization of inclusion bodies: insights from explainable machine learning approaches
We present explainable machine learning approaches for gaining deeper insights into the solubilization processes of inclusion bodies. The machine learning model with the highest prediction accuracy for the protein yield is further evaluated with regard to Shapley additive explanation (SHAP) values in terms of feature importance studies. Our results highlight an inverse fractional relationship between the protein yield and total protein concentration. Further correlations can also be observed for the dominant influences of the urea concentration and the underlying pH values. All findings are used to develop an analytical expression that is in reasonable agreement with experimental data. The resulting master curve highlights the benefits of explainable machine learning approaches for the detailed understanding of certain biopharmaceutical manufacturing steps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Editorial: The role of agave as feedstock within a sustainable circular bioeconomy Title: waste to wealth: the power of food-waste anaerobic digestion integrated with lactic acid fermentation Brewers’ spent grain pretreatment optimisation to enhance enzymatic hydrolysis of whole slurry and resuspended pellet Review of the recent advances on the fabrication, modification and application of electrospun TiO2 and ZnO nanofibers for the treatment of organic pollutants in wastewater Receptors for the recognition and extraction of lithium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1