纳米级零价铁掺杂碳化沸石咪唑酸骨架-8的合成及其对水中亚甲基蓝的去除作用

IF 0.7 4区 工程技术 Q4 CHEMISTRY, APPLIED Polish Journal of Chemical Technology Pub Date : 2023-02-18 DOI:10.2478/pjct-2023-0003
Shuai Chen, Lemeng Qiao, Xuejiao Feng, Yufu Huang, Guilan Gao, Jie Guan, Donghai Lin
{"title":"纳米级零价铁掺杂碳化沸石咪唑酸骨架-8的合成及其对水中亚甲基蓝的去除作用","authors":"Shuai Chen, Lemeng Qiao, Xuejiao Feng, Yufu Huang, Guilan Gao, Jie Guan, Donghai Lin","doi":"10.2478/pjct-2023-0003","DOIUrl":null,"url":null,"abstract":"Abstract Nanoscale zero-valent iron-doped carbonized zeolitic imidazolate framework-8 (nZVI/CZIF-8) was prepared by carbonation of ferric nitrate and ZIF-8 at 800 °C and used as an adsorbent to remove methylene blue (MB) from water. The synthesized nZVI/CZIF-8 has a specific surface area of 806.9 m2/g, a pore volume of 0.86 cm3/g and an nZVI content of 1.35%, respectively. Both the nZVI/CZIF-8 and CZIF-8 have identical functional groups of O-H, C-H and C=C. With the increase of CZIF-8 size, MB removal rate increased. The doping of nZVI increased the MB removal percentage from 74.5% for ZIF-8 to 96.2% within 80 min for nZVI/CZIF-8. The MB removal percentage increased with the dosage of nZVI/CZIF-8. The MB adsorption with the adsorbents conforms to the Freundlich adsorption isothermal model and the removal rate fitted well to a pseudo-first-order model. The results demonstrate the feasibility of synthesizing high active and stable nZVI/CZIF-8 particles.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"25 1","pages":"12 - 19"},"PeriodicalIF":0.7000,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of nanoscale zero-valent iron doped carbonized zeolitic imidazolate framework-8 for methylene blue removal in water\",\"authors\":\"Shuai Chen, Lemeng Qiao, Xuejiao Feng, Yufu Huang, Guilan Gao, Jie Guan, Donghai Lin\",\"doi\":\"10.2478/pjct-2023-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Nanoscale zero-valent iron-doped carbonized zeolitic imidazolate framework-8 (nZVI/CZIF-8) was prepared by carbonation of ferric nitrate and ZIF-8 at 800 °C and used as an adsorbent to remove methylene blue (MB) from water. The synthesized nZVI/CZIF-8 has a specific surface area of 806.9 m2/g, a pore volume of 0.86 cm3/g and an nZVI content of 1.35%, respectively. Both the nZVI/CZIF-8 and CZIF-8 have identical functional groups of O-H, C-H and C=C. With the increase of CZIF-8 size, MB removal rate increased. The doping of nZVI increased the MB removal percentage from 74.5% for ZIF-8 to 96.2% within 80 min for nZVI/CZIF-8. The MB removal percentage increased with the dosage of nZVI/CZIF-8. The MB adsorption with the adsorbents conforms to the Freundlich adsorption isothermal model and the removal rate fitted well to a pseudo-first-order model. The results demonstrate the feasibility of synthesizing high active and stable nZVI/CZIF-8 particles.\",\"PeriodicalId\":20324,\"journal\":{\"name\":\"Polish Journal of Chemical Technology\",\"volume\":\"25 1\",\"pages\":\"12 - 19\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Chemical Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pjct-2023-0003\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Chemical Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pjct-2023-0003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要以硝酸铁和ZIF-8为原料,在800°C下碳酸化制备了纳米级零价铁掺杂碳化沸石咪唑盐骨架-8(nZVI/CZIF-8),并将其用作去除水中亚甲基蓝(MB)的吸附剂。合成的nZVI/CZIF-8的比表面积分别为806.9m2/g、孔体积分别为0.86cm3/g和nZVI含量分别为1.35%。nZVI/CZIF-8和CZIF-8都具有相同的O-H、C-H和C=C官能团。随着CZIF-8尺寸的增加,MB的去除率增加。nZVI的掺杂使MB的去除率在80分钟内从ZIF-8的74.5%提高到nZVI/CZIF-8的96.2%。MB的去除率随着nZVI/CZIF-8的加入而增加。吸附剂对MB的吸附符合Freundlich吸附等温模型,去除率符合拟一阶模型。结果证明了合成高活性、稳定的nZVI/CZIF-8粒子的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of nanoscale zero-valent iron doped carbonized zeolitic imidazolate framework-8 for methylene blue removal in water
Abstract Nanoscale zero-valent iron-doped carbonized zeolitic imidazolate framework-8 (nZVI/CZIF-8) was prepared by carbonation of ferric nitrate and ZIF-8 at 800 °C and used as an adsorbent to remove methylene blue (MB) from water. The synthesized nZVI/CZIF-8 has a specific surface area of 806.9 m2/g, a pore volume of 0.86 cm3/g and an nZVI content of 1.35%, respectively. Both the nZVI/CZIF-8 and CZIF-8 have identical functional groups of O-H, C-H and C=C. With the increase of CZIF-8 size, MB removal rate increased. The doping of nZVI increased the MB removal percentage from 74.5% for ZIF-8 to 96.2% within 80 min for nZVI/CZIF-8. The MB removal percentage increased with the dosage of nZVI/CZIF-8. The MB adsorption with the adsorbents conforms to the Freundlich adsorption isothermal model and the removal rate fitted well to a pseudo-first-order model. The results demonstrate the feasibility of synthesizing high active and stable nZVI/CZIF-8 particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polish Journal of Chemical Technology
Polish Journal of Chemical Technology CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
1.70
自引率
10.00%
发文量
22
审稿时长
4.5 months
期刊介绍: Polish Journal of Chemical Technology is a peer-reviewed, international journal devoted to fundamental and applied chemistry, as well as chemical engineering and biotechnology research. It has a very broad scope but favors interdisciplinary research that bring chemical technology together with other disciplines. All authors receive very fast and comprehensive peer-review. Additionally, every published article is promoted to researchers working in the same field.
期刊最新文献
A Comprehensive Analysis of the Hydrogen Generation Technology Through Electrochemical Water and Industrial Wastewater Electrolysis Sulfonation Modification of Guar Gum and Its Performance as a Fracturing Fluids Thickener Synthesis and Self-assembly of a Simple CO2-responsive Diblock Polymer Preparation of nano SnO2-Sb2O3 composite electrode by cathodic deposition for the elimination of phenol by Sonoelectrochemical oxidation Synthesis and characterization of curcumin-encapsulated loaded on carboxymethyl cellulose with docking validation as α-amylase and α-glucosidase inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1