S. Mzali, F. Elwasli, F. Zemzemi, S. Mezlini, A. Mkaddem, M. Bouazizi
{"title":"单向纤维增强聚酯复合材料刮擦时材料去除过程分析","authors":"S. Mzali, F. Elwasli, F. Zemzemi, S. Mezlini, A. Mkaddem, M. Bouazizi","doi":"10.1515/secm-2022-0172","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the micromechanical scratch behavior of unidirectional glass fiber reinforced polyester (GFRP) using several wear conditions was highlighted. Single-indenter scratch tests (SSTs) were carried out on GFRP composite material perpendicular (SST⊥) and parallel (SST//) to fiber direction. Damage modes dominating the material removal process (MRP) and friction exhibit significant sensitivity to both attack angle and normal load. From findings, damage modes and apparent friction coefficient substantially accentuate when increasing the attack angle. The inspections of the damage state at different testing conditions using a scanning electron microscope (SEM) reveal the dominating modes governing the MRP through the different phases. The response surface methodology (RSM) was adopted to develop a mathematical model based on the measured data. The RSM approach was found very promoting for predicting friction evolution versus attack angle and normal load. The proposed model reveals good ability not only in predicting apparent friction coefficient but also in detecting separately its ploughing and adhesive component. To emphasize the correlation between friction coefficient and MRP, the wear maps have been drawn up.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of material removal process when scratching unidirectional fibers reinforced polyester composites\",\"authors\":\"S. Mzali, F. Elwasli, F. Zemzemi, S. Mezlini, A. Mkaddem, M. Bouazizi\",\"doi\":\"10.1515/secm-2022-0172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, the micromechanical scratch behavior of unidirectional glass fiber reinforced polyester (GFRP) using several wear conditions was highlighted. Single-indenter scratch tests (SSTs) were carried out on GFRP composite material perpendicular (SST⊥) and parallel (SST//) to fiber direction. Damage modes dominating the material removal process (MRP) and friction exhibit significant sensitivity to both attack angle and normal load. From findings, damage modes and apparent friction coefficient substantially accentuate when increasing the attack angle. The inspections of the damage state at different testing conditions using a scanning electron microscope (SEM) reveal the dominating modes governing the MRP through the different phases. The response surface methodology (RSM) was adopted to develop a mathematical model based on the measured data. The RSM approach was found very promoting for predicting friction evolution versus attack angle and normal load. The proposed model reveals good ability not only in predicting apparent friction coefficient but also in detecting separately its ploughing and adhesive component. To emphasize the correlation between friction coefficient and MRP, the wear maps have been drawn up.\",\"PeriodicalId\":21480,\"journal\":{\"name\":\"Science and Engineering of Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Engineering of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/secm-2022-0172\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0172","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Analysis of material removal process when scratching unidirectional fibers reinforced polyester composites
Abstract In this study, the micromechanical scratch behavior of unidirectional glass fiber reinforced polyester (GFRP) using several wear conditions was highlighted. Single-indenter scratch tests (SSTs) were carried out on GFRP composite material perpendicular (SST⊥) and parallel (SST//) to fiber direction. Damage modes dominating the material removal process (MRP) and friction exhibit significant sensitivity to both attack angle and normal load. From findings, damage modes and apparent friction coefficient substantially accentuate when increasing the attack angle. The inspections of the damage state at different testing conditions using a scanning electron microscope (SEM) reveal the dominating modes governing the MRP through the different phases. The response surface methodology (RSM) was adopted to develop a mathematical model based on the measured data. The RSM approach was found very promoting for predicting friction evolution versus attack angle and normal load. The proposed model reveals good ability not only in predicting apparent friction coefficient but also in detecting separately its ploughing and adhesive component. To emphasize the correlation between friction coefficient and MRP, the wear maps have been drawn up.
期刊介绍:
Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.