William C. Lepry, E. Rezabeigi, Sophia Smith, S. Nazhat
{"title":"溶胶-凝胶衍生硼酸盐玻璃在六种不同溶液介质中的溶解性和生物活性","authors":"William C. Lepry, E. Rezabeigi, Sophia Smith, S. Nazhat","doi":"10.1515/bglass-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract Sol-gel derived bioactive borate glasses (SGBGs) rapidly convert to hydroxycarbonated apatite (HCA) in simulated body fluid (SBF), in vitro. While previous studies have examined the influence of processing and composition on bioactivity, the effect of the in vitro dissolution media has not been well examined for these glasses. In this study, the mineral conversion of a SGBG substituted 45S5 Bioglass® formulation (“B46”, (46.1)B2O3-(26.9)CaO-(24.4)Na2O-(2.6)P2O5, mol%), was examined in six different dissolution media: SBF, tris(hydroxymethyl)aminomethane (TRIS, pH 7.4) buffer, Dulbecco’s phosphate buffered saline (PBS, 1X), Dulbecco’s Modified Eagle Medium (DMEM, 1X), 0.9% Saline (SAL), and deionized water (DIW) at 1.5 mg/mL for 10 min, 2h, and 1d. All media underwent a rapid increase in pH as a result of glass dissolution and ion release. B46 in SBF, TRIS, and PBS converted to HCA while B46 in DMEM, SAL, and DIW converted to calcite according to attenuated total reflectance-Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The ratio of B46 to SBF was also examined at 3, 6, 12, and 24 mg/mL for 1d. These results help elucidate the dissolution and mineral conversion of borate glasses and help provide insights into optimizing pre-conditioning treatments for both in vitro and in vivo analyses.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":"5 1","pages":"111 - 98"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2019-0009","citationCount":"11","resultStr":"{\"title\":\"Dissolution and bioactivity of a sol-gel derived borate glass in six different solution media\",\"authors\":\"William C. Lepry, E. Rezabeigi, Sophia Smith, S. Nazhat\",\"doi\":\"10.1515/bglass-2019-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Sol-gel derived bioactive borate glasses (SGBGs) rapidly convert to hydroxycarbonated apatite (HCA) in simulated body fluid (SBF), in vitro. While previous studies have examined the influence of processing and composition on bioactivity, the effect of the in vitro dissolution media has not been well examined for these glasses. In this study, the mineral conversion of a SGBG substituted 45S5 Bioglass® formulation (“B46”, (46.1)B2O3-(26.9)CaO-(24.4)Na2O-(2.6)P2O5, mol%), was examined in six different dissolution media: SBF, tris(hydroxymethyl)aminomethane (TRIS, pH 7.4) buffer, Dulbecco’s phosphate buffered saline (PBS, 1X), Dulbecco’s Modified Eagle Medium (DMEM, 1X), 0.9% Saline (SAL), and deionized water (DIW) at 1.5 mg/mL for 10 min, 2h, and 1d. All media underwent a rapid increase in pH as a result of glass dissolution and ion release. B46 in SBF, TRIS, and PBS converted to HCA while B46 in DMEM, SAL, and DIW converted to calcite according to attenuated total reflectance-Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The ratio of B46 to SBF was also examined at 3, 6, 12, and 24 mg/mL for 1d. These results help elucidate the dissolution and mineral conversion of borate glasses and help provide insights into optimizing pre-conditioning treatments for both in vitro and in vivo analyses.\",\"PeriodicalId\":37354,\"journal\":{\"name\":\"Biomedical Glasses\",\"volume\":\"5 1\",\"pages\":\"111 - 98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/bglass-2019-0009\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Glasses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bglass-2019-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Dissolution and bioactivity of a sol-gel derived borate glass in six different solution media
Abstract Sol-gel derived bioactive borate glasses (SGBGs) rapidly convert to hydroxycarbonated apatite (HCA) in simulated body fluid (SBF), in vitro. While previous studies have examined the influence of processing and composition on bioactivity, the effect of the in vitro dissolution media has not been well examined for these glasses. In this study, the mineral conversion of a SGBG substituted 45S5 Bioglass® formulation (“B46”, (46.1)B2O3-(26.9)CaO-(24.4)Na2O-(2.6)P2O5, mol%), was examined in six different dissolution media: SBF, tris(hydroxymethyl)aminomethane (TRIS, pH 7.4) buffer, Dulbecco’s phosphate buffered saline (PBS, 1X), Dulbecco’s Modified Eagle Medium (DMEM, 1X), 0.9% Saline (SAL), and deionized water (DIW) at 1.5 mg/mL for 10 min, 2h, and 1d. All media underwent a rapid increase in pH as a result of glass dissolution and ion release. B46 in SBF, TRIS, and PBS converted to HCA while B46 in DMEM, SAL, and DIW converted to calcite according to attenuated total reflectance-Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The ratio of B46 to SBF was also examined at 3, 6, 12, and 24 mg/mL for 1d. These results help elucidate the dissolution and mineral conversion of borate glasses and help provide insights into optimizing pre-conditioning treatments for both in vitro and in vivo analyses.
期刊介绍:
Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.