非对称随机波动率模型的极大似然推理

IF 1.1 Q3 ECONOMICS Econometrics Pub Date : 2022-12-23 DOI:10.3390/econometrics11010001
Omar Abbara, M. Zevallos
{"title":"非对称随机波动率模型的极大似然推理","authors":"Omar Abbara, M. Zevallos","doi":"10.3390/econometrics11010001","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method for estimating and forecasting asymmetric stochastic volatility models. The proposal is based on dynamic linear models with Markov switching written as state space models. Then, the likelihood is calculated through Kalman filter outputs and the estimates are obtained by the maximum likelihood method. Monte Carlo experiments are performed to assess the quality of estimation. In addition, a backtesting exercise with the real-life time series illustrates that the proposed method is a quick and accurate alternative for forecasting value-at-risk.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Likelihood Inference for Asymmetric Stochastic Volatility Models\",\"authors\":\"Omar Abbara, M. Zevallos\",\"doi\":\"10.3390/econometrics11010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new method for estimating and forecasting asymmetric stochastic volatility models. The proposal is based on dynamic linear models with Markov switching written as state space models. Then, the likelihood is calculated through Kalman filter outputs and the estimates are obtained by the maximum likelihood method. Monte Carlo experiments are performed to assess the quality of estimation. In addition, a backtesting exercise with the real-life time series illustrates that the proposed method is a quick and accurate alternative for forecasting value-at-risk.\",\"PeriodicalId\":11499,\"journal\":{\"name\":\"Econometrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/econometrics11010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics11010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种估计和预测不对称随机波动率模型的新方法。该方案基于动态线性模型,将马尔可夫切换写成状态空间模型。然后,通过卡尔曼滤波器输出计算似然性,并通过最大似然法获得估计值。进行蒙特卡罗实验来评估估计的质量。此外,对真实时间序列的回溯测试表明,所提出的方法是预测风险价值的快速准确的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum Likelihood Inference for Asymmetric Stochastic Volatility Models
In this paper, we propose a new method for estimating and forecasting asymmetric stochastic volatility models. The proposal is based on dynamic linear models with Markov switching written as state space models. Then, the likelihood is calculated through Kalman filter outputs and the estimates are obtained by the maximum likelihood method. Monte Carlo experiments are performed to assess the quality of estimation. In addition, a backtesting exercise with the real-life time series illustrates that the proposed method is a quick and accurate alternative for forecasting value-at-risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
期刊最新文献
Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality Signs of Fluctuations in Energy Prices and Energy Stock-Market Volatility in Brazil and in the US Transient and Persistent Technical Efficiencies in Rice Farming: A Generalized True Random-Effects Model Approach Is It Sufficient to Select the Optimal Class Number Based Only on Information Criteria in Fixed- and Random-Parameter Latent Class Discrete Choice Modeling Approaches? Instrumental Variable Method for Regularized Estimation in Generalized Linear Measurement Error Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1