{"title":"分子动力学模拟Santotrac 50基润滑剂在高剪切下的流动和滑移过程","authors":"Xin Zhao, Chao Wei, Zhenxin Yin, Wenjie Ma","doi":"10.1002/ls.1629","DOIUrl":null,"url":null,"abstract":"<p>We investigate flow and slip behaviour of Santotrac 50 molecules under high shear in Couette cell by means of Molecular Dynamic simulation to understand reduced friction force. Molecular chain stretches and oriented to shear direction, and move. Slip starts on metal surface at 2 × 10<sup>8</sup> s<sup>−1</sup>, and increases with shear rate. Slip length keeps scale at nanometre. Molecular conformation and occurrence of slip both indicate a reduced shear stress. Furthermore, when changing wettability, slip length increases in power law and thus decreases shear stress greatly. Occurrence of low-density region near surface can explain slip. And thus, we extended apparent slip model, which divided lubricant into liquid layers with different viscosities, to elucidate the relationship between molecule distribution inner layer and slip on surface influenced by shear velocity and wettability. Above all, our research sheds light on flow and slip behaviour of complex fluid and can be applied in improving lubrication property.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 3","pages":"163-170"},"PeriodicalIF":1.8000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow and slip process of Santotrac 50-based lubricant under high shear by molecular dynamic simulation\",\"authors\":\"Xin Zhao, Chao Wei, Zhenxin Yin, Wenjie Ma\",\"doi\":\"10.1002/ls.1629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate flow and slip behaviour of Santotrac 50 molecules under high shear in Couette cell by means of Molecular Dynamic simulation to understand reduced friction force. Molecular chain stretches and oriented to shear direction, and move. Slip starts on metal surface at 2 × 10<sup>8</sup> s<sup>−1</sup>, and increases with shear rate. Slip length keeps scale at nanometre. Molecular conformation and occurrence of slip both indicate a reduced shear stress. Furthermore, when changing wettability, slip length increases in power law and thus decreases shear stress greatly. Occurrence of low-density region near surface can explain slip. And thus, we extended apparent slip model, which divided lubricant into liquid layers with different viscosities, to elucidate the relationship between molecule distribution inner layer and slip on surface influenced by shear velocity and wettability. Above all, our research sheds light on flow and slip behaviour of complex fluid and can be applied in improving lubrication property.</p>\",\"PeriodicalId\":18114,\"journal\":{\"name\":\"Lubrication Science\",\"volume\":\"35 3\",\"pages\":\"163-170\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubrication Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ls.1629\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1629","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Flow and slip process of Santotrac 50-based lubricant under high shear by molecular dynamic simulation
We investigate flow and slip behaviour of Santotrac 50 molecules under high shear in Couette cell by means of Molecular Dynamic simulation to understand reduced friction force. Molecular chain stretches and oriented to shear direction, and move. Slip starts on metal surface at 2 × 108 s−1, and increases with shear rate. Slip length keeps scale at nanometre. Molecular conformation and occurrence of slip both indicate a reduced shear stress. Furthermore, when changing wettability, slip length increases in power law and thus decreases shear stress greatly. Occurrence of low-density region near surface can explain slip. And thus, we extended apparent slip model, which divided lubricant into liquid layers with different viscosities, to elucidate the relationship between molecule distribution inner layer and slip on surface influenced by shear velocity and wettability. Above all, our research sheds light on flow and slip behaviour of complex fluid and can be applied in improving lubrication property.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.