{"title":"重新审视尖峰红宝石:导致Cr:Al混沌状态的自发周期性尖峰振荡₂O₃ 532nm连续泵浦激光器","authors":"K. Otsuka, S. Sudo","doi":"10.1364/optcon.497640","DOIUrl":null,"url":null,"abstract":"This paper reexamines a 60 year old mystery of spiking behavior in ruby lasers with a cw 532 nm pump, paying special attention to mode matching between the pump and lasing beam within a ruby crystal placed in a semi-confocal laser cavity. Periodic spiking oscillations were observed in a limited pump power regime, where spikes obeying the generic asymmetric hyperbolic function appeared at a repetition rate around 50 kHz and with a 130-150 ns width and 0.1-0.6 microjoule energy depending on the pump power. The physics of the spiking behavior based on Kleinman's mechanical approach and a plausible interpretation for the periodic spiking oscillation in terms of self-induced mode matching between the pump and laser beams through the self-induced Kerr-lens effect are addressed. The statistical nature inherent to spiking and the associated self-organized critical behavior in quasi-periodic spiking oscillations as well as chaotic states occurring outside the periodic spiking regime are also explored from a nonlinear dynamics point of view.","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spiking ruby revisited: self-induced periodic spiking oscillations leading to chaotic state in a Cr:Al₂O₃ laser with cw 532-nm pumping\",\"authors\":\"K. Otsuka, S. Sudo\",\"doi\":\"10.1364/optcon.497640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reexamines a 60 year old mystery of spiking behavior in ruby lasers with a cw 532 nm pump, paying special attention to mode matching between the pump and lasing beam within a ruby crystal placed in a semi-confocal laser cavity. Periodic spiking oscillations were observed in a limited pump power regime, where spikes obeying the generic asymmetric hyperbolic function appeared at a repetition rate around 50 kHz and with a 130-150 ns width and 0.1-0.6 microjoule energy depending on the pump power. The physics of the spiking behavior based on Kleinman's mechanical approach and a plausible interpretation for the periodic spiking oscillation in terms of self-induced mode matching between the pump and laser beams through the self-induced Kerr-lens effect are addressed. The statistical nature inherent to spiking and the associated self-organized critical behavior in quasi-periodic spiking oscillations as well as chaotic states occurring outside the periodic spiking regime are also explored from a nonlinear dynamics point of view.\",\"PeriodicalId\":74366,\"journal\":{\"name\":\"Optics continuum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics continuum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/optcon.497640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics continuum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optcon.497640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Spiking ruby revisited: self-induced periodic spiking oscillations leading to chaotic state in a Cr:Al₂O₃ laser with cw 532-nm pumping
This paper reexamines a 60 year old mystery of spiking behavior in ruby lasers with a cw 532 nm pump, paying special attention to mode matching between the pump and lasing beam within a ruby crystal placed in a semi-confocal laser cavity. Periodic spiking oscillations were observed in a limited pump power regime, where spikes obeying the generic asymmetric hyperbolic function appeared at a repetition rate around 50 kHz and with a 130-150 ns width and 0.1-0.6 microjoule energy depending on the pump power. The physics of the spiking behavior based on Kleinman's mechanical approach and a plausible interpretation for the periodic spiking oscillation in terms of self-induced mode matching between the pump and laser beams through the self-induced Kerr-lens effect are addressed. The statistical nature inherent to spiking and the associated self-organized critical behavior in quasi-periodic spiking oscillations as well as chaotic states occurring outside the periodic spiking regime are also explored from a nonlinear dynamics point of view.