Pütürge叶蜡石浮选选矿的矿物学和化学评价

IF 1.1 4区 地球科学 Q4 CHEMISTRY, PHYSICAL Clay Minerals Pub Date : 2022-06-01 DOI:10.1180/clm.2022.24
Suna Elif Akçin, G. Bulut, Bala Ekinci Şans, F. Esenli
{"title":"Pütürge叶蜡石浮选选矿的矿物学和化学评价","authors":"Suna Elif Akçin, G. Bulut, Bala Ekinci Şans, F. Esenli","doi":"10.1180/clm.2022.24","DOIUrl":null,"url":null,"abstract":"Abstract Samples from the pyrophyllite reserves in the Malatya–Pütürge region, used in the production of the whitest cement in Europe, were beneficiated using flotation. The mineralogical composition of the natural pyrophyllite, as determined using X-ray diffraction, includes pyrophyllite, kaolinite, quartz, illite–mica and feldspar. The chemical composition of pyrophyllite contains 69.75% SiO2 and 23.04% Al2O3. The pyrophyllite percentage (40–45 wt.%) of the natural sample increased to 60–80 wt.% after flotation. In flotation experiments, the effects of reagent amounts, types and their mixtures were investigated. Methyl isobutyl carbinol (MIBC) and pine oil as frothers and kerosene as a collector were used in the flotation studies. The use of reagents as mixtures has a positive effect on the beneficiation compared to use on their own. The best result was obtained for a mixture of MIBC with kerosene, which is a non-ionic hydrocarbon oil, yielding a concentrate containing 26.63% Al2O3. Improved results were also observed for kerosene plus frother mixtures after flotation cleaning circuits. The bubbles formed during flotation were photographed and the bubble diameters were measured using the ImageJ program. The Al2O3 content was evaluated by correlating the bubble diameters. In general, selectivity decreased during experiments in which bubble diameters were reduced.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The beneficiation of the Pütürge pyrophyllite ore by flotation: mineralogical and chemical evaluation\",\"authors\":\"Suna Elif Akçin, G. Bulut, Bala Ekinci Şans, F. Esenli\",\"doi\":\"10.1180/clm.2022.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Samples from the pyrophyllite reserves in the Malatya–Pütürge region, used in the production of the whitest cement in Europe, were beneficiated using flotation. The mineralogical composition of the natural pyrophyllite, as determined using X-ray diffraction, includes pyrophyllite, kaolinite, quartz, illite–mica and feldspar. The chemical composition of pyrophyllite contains 69.75% SiO2 and 23.04% Al2O3. The pyrophyllite percentage (40–45 wt.%) of the natural sample increased to 60–80 wt.% after flotation. In flotation experiments, the effects of reagent amounts, types and their mixtures were investigated. Methyl isobutyl carbinol (MIBC) and pine oil as frothers and kerosene as a collector were used in the flotation studies. The use of reagents as mixtures has a positive effect on the beneficiation compared to use on their own. The best result was obtained for a mixture of MIBC with kerosene, which is a non-ionic hydrocarbon oil, yielding a concentrate containing 26.63% Al2O3. Improved results were also observed for kerosene plus frother mixtures after flotation cleaning circuits. The bubbles formed during flotation were photographed and the bubble diameters were measured using the ImageJ program. The Al2O3 content was evaluated by correlating the bubble diameters. In general, selectivity decreased during experiments in which bubble diameters were reduced.\",\"PeriodicalId\":10311,\"journal\":{\"name\":\"Clay Minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clay Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1180/clm.2022.24\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clay Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1180/clm.2022.24","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要:来自Malatya–Pütürge地区叶蜡石储量的样品,用于生产欧洲最白的水泥,采用浮选法进行了选矿。通过X射线衍射测定的天然叶蜡石的矿物学成分包括叶蜡石、高岭石、石英、伊利石-云母和长石。叶蜡石的化学成分含有69.75%的SiO2和23.04%的Al2O3。浮选后,天然样品的叶蜡石百分比(40–45 wt.%)增加到60–80 wt.%。在浮选实验中,研究了药剂用量、种类及其混合物的影响。以甲基异丁基甲醇(MIBC)和松油为起泡剂,煤油为捕收剂进行了浮选研究。与单独使用相比,将试剂作为混合物使用对选矿有积极影响。MIBC与煤油(一种非离子烃油)的混合物获得了最好的结果,得到了含有26.63%Al2O3的浓缩物。在浮选清洁回路之后,还观察到煤油加起泡剂混合物的改进结果。对浮选过程中形成的气泡进行拍照,并使用ImageJ程序测量气泡直径。Al2O3含量是通过关联气泡直径来评估的。通常,在气泡直径减小的实验中,选择性降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The beneficiation of the Pütürge pyrophyllite ore by flotation: mineralogical and chemical evaluation
Abstract Samples from the pyrophyllite reserves in the Malatya–Pütürge region, used in the production of the whitest cement in Europe, were beneficiated using flotation. The mineralogical composition of the natural pyrophyllite, as determined using X-ray diffraction, includes pyrophyllite, kaolinite, quartz, illite–mica and feldspar. The chemical composition of pyrophyllite contains 69.75% SiO2 and 23.04% Al2O3. The pyrophyllite percentage (40–45 wt.%) of the natural sample increased to 60–80 wt.% after flotation. In flotation experiments, the effects of reagent amounts, types and their mixtures were investigated. Methyl isobutyl carbinol (MIBC) and pine oil as frothers and kerosene as a collector were used in the flotation studies. The use of reagents as mixtures has a positive effect on the beneficiation compared to use on their own. The best result was obtained for a mixture of MIBC with kerosene, which is a non-ionic hydrocarbon oil, yielding a concentrate containing 26.63% Al2O3. Improved results were also observed for kerosene plus frother mixtures after flotation cleaning circuits. The bubbles formed during flotation were photographed and the bubble diameters were measured using the ImageJ program. The Al2O3 content was evaluated by correlating the bubble diameters. In general, selectivity decreased during experiments in which bubble diameters were reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clay Minerals
Clay Minerals 地学-矿物学
CiteScore
3.00
自引率
20.00%
发文量
25
审稿时长
6 months
期刊介绍: Clay Minerals is an international journal of mineral sciences, published four times a year, including research papers about clays, clay minerals and related materials, natural or synthetic. The journal includes papers on Earth processes soil science, geology/mineralogy, chemistry/material science, colloid/surface science, applied science and technology and health/ environment topics. The journal has an international editorial board with members from fifteen countries.
期刊最新文献
Compress Earthen Blocks using Mbam alluvial clays: Performances Comparison using Statistical Analysis of Cement versus Heat-stabilized Blocks Facile preparation of sepiolite-based composites and their antibacterial/rheological properties Production of lightweight expanded aggregates from smectite clay, palygorskite rich-sediment and phosphate sludge Formation of iron-rich phyllosilicates in the FeO-SiO2-H2O system during hydrothermal synthesis as a function of pH Role of particle gradation of clay-sand mixture on interfacial adhesion performance of polymer coating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1