Xiong Yang, Maoyong Zhi, Yuchuan Li, Hui Xin, Rong Fan, Xiantao Chen, Quanyi Liu, Yuanhua He
{"title":"掺入MoO3颗粒改善酚醛树脂的阻燃抑烟性能","authors":"Xiong Yang, Maoyong Zhi, Yuchuan Li, Hui Xin, Rong Fan, Xiantao Chen, Quanyi Liu, Yuanhua He","doi":"10.1177/09540083231153336","DOIUrl":null,"url":null,"abstract":"Phenolic resin (PF) is widely used in aerospace, composite materials, and other fields. However, large amount of heat and smoke are produced during its combustion process, which is an important factor limiting its usage. To solve this problem, additive flame retardant MoO3 has been incorporated into PF for improving its flame retardancy and smoke suppression properties. Thermogravimetric analyses results show that the T5% of PF composites was gradually decreased from 264°C to 184°C and the char yield of PF-10% MoO3 is 57 wt.%, higher than that of neat PF (50 wt.%). The PF composites with 10 wt.% MoO3 passed UL-94 V-0 rating with a limiting oxygen index value of 29.8%. Meanwhile, the total heat release and total smoke production of PF-10% MoO3 are 37.60 MJ/m2 and 5.79 m2 respectively, which are reduced by 30.5% and 24.8% compared with neat PF. Only 10 wt.% MoO3 provide a 56.5% reduction (from 255 to 111) in maximal smoke density, meaning the good smoke suppression properties of MoO3. The pyrolysis products components are determined by thermogravimetric analysis combined with Fourier transform infrared spectroscopy. Furthermore, the micromorphology and chemical structure of char residue are also investigated by scanning electron microscopy, x-ray diffraction and Raman spectroscopy techniques. The promoting carbonization effect of MoO3 significantly reduces the heat release and toxic smoke production of PF composites.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":"35 1","pages":"559 - 570"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved flame retardancy and smoke suppression properties of phenolic resin by incorporating MoO3 particles\",\"authors\":\"Xiong Yang, Maoyong Zhi, Yuchuan Li, Hui Xin, Rong Fan, Xiantao Chen, Quanyi Liu, Yuanhua He\",\"doi\":\"10.1177/09540083231153336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phenolic resin (PF) is widely used in aerospace, composite materials, and other fields. However, large amount of heat and smoke are produced during its combustion process, which is an important factor limiting its usage. To solve this problem, additive flame retardant MoO3 has been incorporated into PF for improving its flame retardancy and smoke suppression properties. Thermogravimetric analyses results show that the T5% of PF composites was gradually decreased from 264°C to 184°C and the char yield of PF-10% MoO3 is 57 wt.%, higher than that of neat PF (50 wt.%). The PF composites with 10 wt.% MoO3 passed UL-94 V-0 rating with a limiting oxygen index value of 29.8%. Meanwhile, the total heat release and total smoke production of PF-10% MoO3 are 37.60 MJ/m2 and 5.79 m2 respectively, which are reduced by 30.5% and 24.8% compared with neat PF. Only 10 wt.% MoO3 provide a 56.5% reduction (from 255 to 111) in maximal smoke density, meaning the good smoke suppression properties of MoO3. The pyrolysis products components are determined by thermogravimetric analysis combined with Fourier transform infrared spectroscopy. Furthermore, the micromorphology and chemical structure of char residue are also investigated by scanning electron microscopy, x-ray diffraction and Raman spectroscopy techniques. The promoting carbonization effect of MoO3 significantly reduces the heat release and toxic smoke production of PF composites.\",\"PeriodicalId\":12932,\"journal\":{\"name\":\"High Performance Polymers\",\"volume\":\"35 1\",\"pages\":\"559 - 570\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Performance Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09540083231153336\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083231153336","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Improved flame retardancy and smoke suppression properties of phenolic resin by incorporating MoO3 particles
Phenolic resin (PF) is widely used in aerospace, composite materials, and other fields. However, large amount of heat and smoke are produced during its combustion process, which is an important factor limiting its usage. To solve this problem, additive flame retardant MoO3 has been incorporated into PF for improving its flame retardancy and smoke suppression properties. Thermogravimetric analyses results show that the T5% of PF composites was gradually decreased from 264°C to 184°C and the char yield of PF-10% MoO3 is 57 wt.%, higher than that of neat PF (50 wt.%). The PF composites with 10 wt.% MoO3 passed UL-94 V-0 rating with a limiting oxygen index value of 29.8%. Meanwhile, the total heat release and total smoke production of PF-10% MoO3 are 37.60 MJ/m2 and 5.79 m2 respectively, which are reduced by 30.5% and 24.8% compared with neat PF. Only 10 wt.% MoO3 provide a 56.5% reduction (from 255 to 111) in maximal smoke density, meaning the good smoke suppression properties of MoO3. The pyrolysis products components are determined by thermogravimetric analysis combined with Fourier transform infrared spectroscopy. Furthermore, the micromorphology and chemical structure of char residue are also investigated by scanning electron microscopy, x-ray diffraction and Raman spectroscopy techniques. The promoting carbonization effect of MoO3 significantly reduces the heat release and toxic smoke production of PF composites.
期刊介绍:
Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.