F. Todd, C. McDermott, A. Harris, A. Bond, S. Gilfillan
{"title":"矿井水回弹引起的地表隆起的水力和力学耦合模型:对矿井水加热和冷却方案的影响","authors":"F. Todd, C. McDermott, A. Harris, A. Bond, S. Gilfillan","doi":"10.1144/sjg2018-028","DOIUrl":null,"url":null,"abstract":"In order to establish sustainable heat loading (heat removal and storage) in abandoned flooded mine workings it is important to understand the geomechanical impact of the cyclical heat loading caused by fluid injection and extraction. This is particularly important where significantly more thermal loading is planned than naturally occurs. A simple calculation shows that the sustainable geothermal heat flux from abandoned coal mines can provide less than a tenth of Scotland's annual domestic heating demand. Any heat removal greater than the natural heat flux will lead to heat mining unless heat storage options are also considered. As a first step, a steady-state, fully saturated, 2D coupled hydromechanical model of a generalized section of pillar-and-stall workings has been created. Mine water rebound was modelled by increasing the hydrostatic pressure sequentially, in line with monitored mine water-level data from Midlothian, Scotland. The modelled uplift to water-level rise ratio of 1.4 mm m−1 is of the same order of magnitude (1 mm m−1) as that observed through interferometric synthetic aperture radar (InSAR) data in the coalfield due to mine water rebound. The modelled magnitude of shear stress at the pillar corners, as a result of horizontal and vertical displacement, is shown to increase linearly with water level. Mine heat systems are expected to cause smaller changes in pressure than those modelled but the results provide initial implications on the potential geomechanical impacts of mine water heat schemes which abstract or inject water and heat into pillar-and-stall coal mine workings. Thematic collection: This article is part of the SJG Collection on Early-Career Research available at: https://www.lyellcollection.org/cc/SJG-early-career-research","PeriodicalId":49556,"journal":{"name":"Scottish Journal of Geology","volume":"55 1","pages":"124 - 133"},"PeriodicalIF":0.5000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Coupled hydraulic and mechanical model of surface uplift due to mine water rebound: implications for mine water heating and cooling schemes\",\"authors\":\"F. Todd, C. McDermott, A. Harris, A. Bond, S. Gilfillan\",\"doi\":\"10.1144/sjg2018-028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to establish sustainable heat loading (heat removal and storage) in abandoned flooded mine workings it is important to understand the geomechanical impact of the cyclical heat loading caused by fluid injection and extraction. This is particularly important where significantly more thermal loading is planned than naturally occurs. A simple calculation shows that the sustainable geothermal heat flux from abandoned coal mines can provide less than a tenth of Scotland's annual domestic heating demand. Any heat removal greater than the natural heat flux will lead to heat mining unless heat storage options are also considered. As a first step, a steady-state, fully saturated, 2D coupled hydromechanical model of a generalized section of pillar-and-stall workings has been created. Mine water rebound was modelled by increasing the hydrostatic pressure sequentially, in line with monitored mine water-level data from Midlothian, Scotland. The modelled uplift to water-level rise ratio of 1.4 mm m−1 is of the same order of magnitude (1 mm m−1) as that observed through interferometric synthetic aperture radar (InSAR) data in the coalfield due to mine water rebound. The modelled magnitude of shear stress at the pillar corners, as a result of horizontal and vertical displacement, is shown to increase linearly with water level. Mine heat systems are expected to cause smaller changes in pressure than those modelled but the results provide initial implications on the potential geomechanical impacts of mine water heat schemes which abstract or inject water and heat into pillar-and-stall coal mine workings. Thematic collection: This article is part of the SJG Collection on Early-Career Research available at: https://www.lyellcollection.org/cc/SJG-early-career-research\",\"PeriodicalId\":49556,\"journal\":{\"name\":\"Scottish Journal of Geology\",\"volume\":\"55 1\",\"pages\":\"124 - 133\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scottish Journal of Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/sjg2018-028\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scottish Journal of Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/sjg2018-028","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOLOGY","Score":null,"Total":0}
Coupled hydraulic and mechanical model of surface uplift due to mine water rebound: implications for mine water heating and cooling schemes
In order to establish sustainable heat loading (heat removal and storage) in abandoned flooded mine workings it is important to understand the geomechanical impact of the cyclical heat loading caused by fluid injection and extraction. This is particularly important where significantly more thermal loading is planned than naturally occurs. A simple calculation shows that the sustainable geothermal heat flux from abandoned coal mines can provide less than a tenth of Scotland's annual domestic heating demand. Any heat removal greater than the natural heat flux will lead to heat mining unless heat storage options are also considered. As a first step, a steady-state, fully saturated, 2D coupled hydromechanical model of a generalized section of pillar-and-stall workings has been created. Mine water rebound was modelled by increasing the hydrostatic pressure sequentially, in line with monitored mine water-level data from Midlothian, Scotland. The modelled uplift to water-level rise ratio of 1.4 mm m−1 is of the same order of magnitude (1 mm m−1) as that observed through interferometric synthetic aperture radar (InSAR) data in the coalfield due to mine water rebound. The modelled magnitude of shear stress at the pillar corners, as a result of horizontal and vertical displacement, is shown to increase linearly with water level. Mine heat systems are expected to cause smaller changes in pressure than those modelled but the results provide initial implications on the potential geomechanical impacts of mine water heat schemes which abstract or inject water and heat into pillar-and-stall coal mine workings. Thematic collection: This article is part of the SJG Collection on Early-Career Research available at: https://www.lyellcollection.org/cc/SJG-early-career-research
期刊介绍:
Although published only since 1965, the Scottish Journal of Geology has a long pedigree. It is the joint publication of the Geological Society of Glasgow and the Edinburgh Geological Society, which prior to 1965 published separate Transactions: from 1860 in the case of Glasgow and 1863 for Edinburgh.
Traditionally, the Journal has acted as the focus for papers on all aspects of Scottish geology and its contiguous areas, including the surrounding seas. The publication policy has always been outward looking, with the Editors encouraging review papers and papers on broader aspects of the Earth sciences that cannot be discussed solely in terms of Scottish geology.
The diverse geology of Scotland continues to provide an important natural laboratory for the study of earth sciences; many seminal studies in geology have been carried out on Scottish rocks, and over the years the results of much of this work had been published in the Journal and its predecessors.
The Journal fully deserves its high reputation worldwide and intends to maintain its status in the front rank of publications in the Earth sciences.