Hong Wang, Wenhua Wang, Runcheng He, Changshou Hong, Jin Wang, Xiangyang Li, Yong Liu
{"title":"降雨条件下铀尾矿库覆盖层氡非稳态渗出的实验研究","authors":"Hong Wang, Wenhua Wang, Runcheng He, Changshou Hong, Jin Wang, Xiangyang Li, Yong Liu","doi":"10.1155/2022/9366056","DOIUrl":null,"url":null,"abstract":"In order to find out radon reduction performance of the overburden layer on uranium mill tailings (UMTs) pond beach surface after rainfall, the rainfall simulation experiment of the overburden layer was carried out with the self-developed equipment. Based on the radon migration model of the overburden layer on the UMTs pond beach surface, the change rule of radon exhalation in four types of compactness of the overburden layer within 120 hours after rainfall was studied, and the corresponding moisture content was also analyzed. The results show that the radon concentration in the overburden layer of UMTs increases nonlinearly; the dynamic change in moisture content of the overburden layer on the beach surface leads to the unsteady radon exhalation. The variation of radon exhalation shows three stages: increase, linear decrease, and stability tendency. After rainfall, radon exhalation rate increases due to water vapor and there is free radon seepage in pores. With the decrease of free radon production rate, radon exhalation rate gradually decreases until it reaches stability again. When the thickness of the overburden layer reduces, the porosity decreases with the increase in compactness of the overburden layer. While the decrease in radon reduction is more obvious, the less time it takes for radon exhalation to vary from unstable to stable overburden after rainfall.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Experimental Study on Unsteady Radon Exhalation from the Overburden Layer of the Uranium Mill Tailings Pond under Rainfall\",\"authors\":\"Hong Wang, Wenhua Wang, Runcheng He, Changshou Hong, Jin Wang, Xiangyang Li, Yong Liu\",\"doi\":\"10.1155/2022/9366056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to find out radon reduction performance of the overburden layer on uranium mill tailings (UMTs) pond beach surface after rainfall, the rainfall simulation experiment of the overburden layer was carried out with the self-developed equipment. Based on the radon migration model of the overburden layer on the UMTs pond beach surface, the change rule of radon exhalation in four types of compactness of the overburden layer within 120 hours after rainfall was studied, and the corresponding moisture content was also analyzed. The results show that the radon concentration in the overburden layer of UMTs increases nonlinearly; the dynamic change in moisture content of the overburden layer on the beach surface leads to the unsteady radon exhalation. The variation of radon exhalation shows three stages: increase, linear decrease, and stability tendency. After rainfall, radon exhalation rate increases due to water vapor and there is free radon seepage in pores. With the decrease of free radon production rate, radon exhalation rate gradually decreases until it reaches stability again. When the thickness of the overburden layer reduces, the porosity decreases with the increase in compactness of the overburden layer. While the decrease in radon reduction is more obvious, the less time it takes for radon exhalation to vary from unstable to stable overburden after rainfall.\",\"PeriodicalId\":21629,\"journal\":{\"name\":\"Science and Technology of Nuclear Installations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Nuclear Installations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/9366056\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Nuclear Installations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/9366056","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Experimental Study on Unsteady Radon Exhalation from the Overburden Layer of the Uranium Mill Tailings Pond under Rainfall
In order to find out radon reduction performance of the overburden layer on uranium mill tailings (UMTs) pond beach surface after rainfall, the rainfall simulation experiment of the overburden layer was carried out with the self-developed equipment. Based on the radon migration model of the overburden layer on the UMTs pond beach surface, the change rule of radon exhalation in four types of compactness of the overburden layer within 120 hours after rainfall was studied, and the corresponding moisture content was also analyzed. The results show that the radon concentration in the overburden layer of UMTs increases nonlinearly; the dynamic change in moisture content of the overburden layer on the beach surface leads to the unsteady radon exhalation. The variation of radon exhalation shows three stages: increase, linear decrease, and stability tendency. After rainfall, radon exhalation rate increases due to water vapor and there is free radon seepage in pores. With the decrease of free radon production rate, radon exhalation rate gradually decreases until it reaches stability again. When the thickness of the overburden layer reduces, the porosity decreases with the increase in compactness of the overburden layer. While the decrease in radon reduction is more obvious, the less time it takes for radon exhalation to vary from unstable to stable overburden after rainfall.
期刊介绍:
Science and Technology of Nuclear Installations is an international scientific journal that aims to make available knowledge on issues related to the nuclear industry and to promote development in the area of nuclear sciences and technologies. The endeavor associated with the establishment and the growth of the journal is expected to lend support to the renaissance of nuclear technology in the world and especially in those countries where nuclear programs have not yet been developed.