镁掺杂氧化锌纳米颗粒的微观结构、表面形貌和抗癌活性

IF 1 4区 材料科学 Journal of Ovonic Research Pub Date : 2022-09-09 DOI:10.15251/jor.2022.185.637
P. Pachamuthu, A. jeyakumari, N. Srinivasan
{"title":"镁掺杂氧化锌纳米颗粒的微观结构、表面形貌和抗癌活性","authors":"P. Pachamuthu, A. jeyakumari, N. Srinivasan","doi":"10.15251/jor.2022.185.637","DOIUrl":null,"url":null,"abstract":"Depending upon their origin and synthesis methods, nanoparticles possess unique physicochemical, structural and morphological characteristics, which are important in a wide variety of applications concomitant to various fields. In the present work, Magnesium doped zinc oxide nanoparticles with different concentrations (5 atomic % and 10 atomic %) are prepared and the prepared samples are annealed at 200 ⸰C for 2 h in a muffle furnace. The structure, surface morphology, chemical composition, optical properties and photoluminescence properties were analyzed using standard procedures. The antioxidant potential and cytotoxicity against the breast cancer MDAMB231 cancer cell line of prepared nanoparticles were explored. A simple, economical soft chemical method was used. The XRD analysis confirmed the presence of hexagonal wurtzite phase with a space group P63mc all the prepared samples. The estimated average grain size for the sample MZ2 (18.16 nm) was smaller than the other samples. The SEM micrograph showed that the morphology of the samples were exhibited the rod shape (MZ1, MZ2 and MZ4) and flower shape (MZ3). The purity of the samples was confirmed by EDAX data. The estimated band gap energy of sample MZ1 and sample MZ3 were 3.41e V and 3.38 e V from the UV-vis analysis. The FT-IR spectra of the samples predicted the presence of functional groups for Zn-O and Mg-O bonds. The PL analysis displayed a strong UV emission peak at 387 nm and a green emission peak at 557 nm. The results of the prepared samples prove the potential toxicity against MDAMB231 breast cancer cell line.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure, surface morphology and anticancer activity of magnesium doped zinc oxide nanoparticles\",\"authors\":\"P. Pachamuthu, A. jeyakumari, N. Srinivasan\",\"doi\":\"10.15251/jor.2022.185.637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depending upon their origin and synthesis methods, nanoparticles possess unique physicochemical, structural and morphological characteristics, which are important in a wide variety of applications concomitant to various fields. In the present work, Magnesium doped zinc oxide nanoparticles with different concentrations (5 atomic % and 10 atomic %) are prepared and the prepared samples are annealed at 200 ⸰C for 2 h in a muffle furnace. The structure, surface morphology, chemical composition, optical properties and photoluminescence properties were analyzed using standard procedures. The antioxidant potential and cytotoxicity against the breast cancer MDAMB231 cancer cell line of prepared nanoparticles were explored. A simple, economical soft chemical method was used. The XRD analysis confirmed the presence of hexagonal wurtzite phase with a space group P63mc all the prepared samples. The estimated average grain size for the sample MZ2 (18.16 nm) was smaller than the other samples. The SEM micrograph showed that the morphology of the samples were exhibited the rod shape (MZ1, MZ2 and MZ4) and flower shape (MZ3). The purity of the samples was confirmed by EDAX data. The estimated band gap energy of sample MZ1 and sample MZ3 were 3.41e V and 3.38 e V from the UV-vis analysis. The FT-IR spectra of the samples predicted the presence of functional groups for Zn-O and Mg-O bonds. The PL analysis displayed a strong UV emission peak at 387 nm and a green emission peak at 557 nm. The results of the prepared samples prove the potential toxicity against MDAMB231 breast cancer cell line.\",\"PeriodicalId\":54394,\"journal\":{\"name\":\"Journal of Ovonic Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovonic Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/jor.2022.185.637\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2022.185.637","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据其来源和合成方法,纳米颗粒具有独特的物理化学、结构和形态特征,这些特征在各个领域的广泛应用中都很重要。在本工作中,制备了不同浓度(5原子%和10原子%)的镁掺杂氧化锌纳米颗粒,并将制备的样品在200⸰在马弗炉中在C中加热2小时。采用标准程序对其结构、表面形貌、化学成分、光学性能和光致发光性能进行了分析。探讨了制备的纳米颗粒对癌症MDAMB231癌症细胞系的抗氧化能力和细胞毒性。采用了一种简单、经济的软化学方法。XRD分析证实,在所有制备的样品中都存在具有空间群P63mc的六方纤锌矿相。样品MZ2(18.16nm)的估计平均晶粒尺寸小于其他样品。SEM显微照片显示,样品的形态表现为棒状(MZ1、MZ2和MZ4)和花状(MZ3)。EDAX数据证实了样品的纯度。根据UV-vis分析,样品MZ1和样品MZ3的估计带隙能量分别为3.41eV和3.38eV。样品的FT-IR光谱预测了Zn-O和Mg-O键官能团的存在。PL分析显示在387nm处的强UV发射峰和在557nm处的绿色发射峰。制备的样品的结果证明了对MDAMB231乳腺癌症细胞系的潜在毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure, surface morphology and anticancer activity of magnesium doped zinc oxide nanoparticles
Depending upon their origin and synthesis methods, nanoparticles possess unique physicochemical, structural and morphological characteristics, which are important in a wide variety of applications concomitant to various fields. In the present work, Magnesium doped zinc oxide nanoparticles with different concentrations (5 atomic % and 10 atomic %) are prepared and the prepared samples are annealed at 200 ⸰C for 2 h in a muffle furnace. The structure, surface morphology, chemical composition, optical properties and photoluminescence properties were analyzed using standard procedures. The antioxidant potential and cytotoxicity against the breast cancer MDAMB231 cancer cell line of prepared nanoparticles were explored. A simple, economical soft chemical method was used. The XRD analysis confirmed the presence of hexagonal wurtzite phase with a space group P63mc all the prepared samples. The estimated average grain size for the sample MZ2 (18.16 nm) was smaller than the other samples. The SEM micrograph showed that the morphology of the samples were exhibited the rod shape (MZ1, MZ2 and MZ4) and flower shape (MZ3). The purity of the samples was confirmed by EDAX data. The estimated band gap energy of sample MZ1 and sample MZ3 were 3.41e V and 3.38 e V from the UV-vis analysis. The FT-IR spectra of the samples predicted the presence of functional groups for Zn-O and Mg-O bonds. The PL analysis displayed a strong UV emission peak at 387 nm and a green emission peak at 557 nm. The results of the prepared samples prove the potential toxicity against MDAMB231 breast cancer cell line.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ovonic Research
Journal of Ovonic Research Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
1.60
自引率
20.00%
发文量
77
期刊介绍: Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.
期刊最新文献
Modified nonlinear ion drift model for TiO2 memristor: a temperature dependent study Electrochemical performance of rice grains like high Mn-doped anatase TiO2 nanoparticles as lithium-ion batteries electrode material Probing optoelectronic and thermoelectric properties of double perovskite halides Li2CuInY6 (Y = Cl, Br, I) for energy conversion applications Absorber layer improvement and performance analysis of CIGS thin-film solar cell Investigations on synthesis, growth and characterisations of a NLO material: L-Tryptophanium phosphite (LTP)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1